Exemple #1
0
def world_feature_extract(wav_list, idx, f0_dict, npow_dict):
    f0s = []
    npows = []
    for f in wav_list:
        # open waveform
        wavf = f.rstrip()
        fs, x = wavfile.read(wavf)
        x = np.array(x, dtype=np.float)
        logging.info("Extract: " + wavf)

        # constract FeatureExtractor class
        feat = FeatureExtractor(analyzer='world', fs=fs)

        # f0 and npow extraction
        f0, _, _ = feat.analyze(x)
        npow = feat.npow()

        f0s.append(f0)
        npows.append(npow)
    f0_dict[idx] = f0s
    npow_dict[idx] = npows
Exemple #2
0
def world_feature_extract(queue, wav_list, args):
    """EXTRACT WORLD FEATURE VECTOR
    Parameters
    ----------
    queue : multiprocessing.Queue()
        the queue to store the file name of utterance
    wav_list : list
        list of the wav files
    args : 
        feature extract arguments
    """
    # define feature extractor
    feature_extractor = FeatureExtractor(analyzer="world",
                                         fs=args.fs,
                                         shiftms=args.shiftms,
                                         minf0=args.minf0,
                                         maxf0=args.maxf0,
                                         fftl=args.fftl)
    # extraction
    for i, wav_name in enumerate(wav_list):
        # check exists
        if args.feature_dir == None:
            feat_name = wav_name.replace("wav", args.feature_format)
        else:
            feat_name = rootdir_replace(wav_name,
                                        extname=args.feature_format,
                                        newdir=args.feature_dir)
        #if not os.path.exists(os.path.dirname(feat_name)):
        #    os.makedirs(os.path.dirname(feat_name))
        if check_hdf5(feat_name, "/world"):
            if args.overwrite:
                logging.info("overwrite %s (%d/%d)" %
                             (wav_name, i + 1, len(wav_list)))
            else:
                logging.info("skip %s (%d/%d)" %
                             (wav_name, i + 1, len(wav_list)))
                continue
        else:
            logging.info("now processing %s (%d/%d)" %
                         (wav_name, i + 1, len(wav_list)))
        # load wavfile and apply low cut filter
        fs, x = wavfile.read(wav_name)
        x = np.array(x, dtype=np.float32)
        if args.highpass_cutoff != 0:
            x = low_cut_filter(x, fs, cutoff=args.highpass_cutoff)

        # check sampling frequency
        if not fs == args.fs:
            logging.error("sampling frequency is not matched.")
            sys.exit(1)

        # extract features
        f0, spc, ap = feature_extractor.analyze(x)
        codeap = feature_extractor.codeap()
        mcep = feature_extractor.mcep(dim=args.mcep_dim, alpha=args.mcep_alpha)
        npow = feature_extractor.npow()
        uv, cont_f0 = convert_continuos_f0(f0)
        lpf_fs = int(1.0 / (args.shiftms * 0.001))
        cont_f0_lpf = low_pass_filter(cont_f0, lpf_fs, cutoff=20)
        next_cutoff = 70
        while not (cont_f0_lpf > [0]).all():
            logging.info("%s low-pass-filtered [%dHz]" %
                         (feat_name, next_cutoff))
            cont_f0_lpf = low_pass_filter(cont_f0, lpf_fs, cutoff=next_cutoff)
            next_cutoff *= 2

        # concatenate
        cont_f0_lpf = np.expand_dims(cont_f0_lpf, axis=-1)
        uv = np.expand_dims(uv, axis=-1)
        feats = np.concatenate([uv, cont_f0_lpf, mcep, codeap], axis=1)

        # save feature
        write_hdf5(feat_name, "/world", feats)
        if args.save_f0:
            write_hdf5(feat_name, "/f0", f0)
        if args.save_ap:
            write_hdf5(feat_name, "/ap", ap)
        if args.save_spc:
            write_hdf5(feat_name, "/spc", spc)
        if args.save_npow:
            write_hdf5(feat_name, "/npow", npow)
        if args.save_extended:
            # extend time resolution
            upsampling_factor = int(args.shiftms * fs * 0.001)
            feats_extended = extend_time(feats, upsampling_factor)
            feats_extended = feats_extended.astype(np.float32)
            write_hdf5(feat_name, "/world_extend", feats_extended)
        if args.save_vad:
            _, vad_idx = extfrm(mcep, npow, power_threshold=args.pow_th)
            write_hdf5(feat_name, "/vad_idx", vad_idx)
    queue.put('Finish')