Exemple #1
0
    def test_linear_baseline_with_spikes_with_first_zeros(self):
        """
        Tests that you can fit a linear baseline, when the second 1000 points are
        0 and the first 1000 points have a slope.
        """
        N = 1010
        x = np.arange(0, N, 1)
        slope = 2.
        offset = 10.

        g1 = norm(loc=100, scale=1.0)  # generate three gaussian as a signal
        g2 = norm(loc=300, scale=3.0)
        g3 = norm(loc=750, scale=5.0)

        y = np.zeros(N)

        y[:1000] = offset + slope * x[:1000] + 100. * g1.pdf(
            x[:1000]) + 300. * g2.pdf(x[:1000]) + 500. * g3.pdf(x[:1000])
        y[:1000] += np.random.random(1000) * 0.5 - 0.25

        z = arPLS(y, lambda_=(10.)**2)
        d = y - z

        fit = np.polyfit(x[:500], z[:500], 1)

        self.assertAlmostEqual(fit[0], slope, places=1)  # x
        self.assertAlmostEqual(fit[1], offset, places=1)  # const
Exemple #2
0
    def test_zero_baseline_no_spikes_no_noise(self):
        offset = 0.
        y = np.zeros(1000) + offset

        z = arPLS(y)

        d = y - z
        self.assertAlmostEqual(np.mean(d), 0, places=1)
Exemple #3
0
    def test_same_return_shape(self):
        """
        """
        y = np.ones(100)
        y += np.random.random(100)

        z = arPLS(y)

        self.assertEqual(y.shape, z.shape)
Exemple #4
0
    def test_zero_baseline_no_spikes(self):
        offset = 0.
        y = np.zeros(1000) + offset
        y += np.random.random(1000) * 0.5 - 0.25

        z = arPLS(y)

        d = y - z
        self.assertAlmostEqual(np.mean(d), 0, places=1)

        # test that it has been smoothed
        self.assertLess(np.std(z, ddof=1), np.std(y, ddof=1))
Exemple #5
0
    def test_linear_baseline_with_spikes(self):
        x = np.arange(0, 1000, 1)
        slope = 2.
        offset = 10.

        g1 = norm(loc=100, scale=1.0)  # generate three gaussian as a signal
        g2 = norm(loc=300, scale=3.0)
        g3 = norm(loc=750, scale=5.0)

        y = offset + slope * x + 200. * g1.pdf(x) + 300. * g2.pdf(
            x) + 500. * g3.pdf(x)
        y += np.random.random(1000) * 0.5 - 0.25

        z = arPLS(y)
        d = y - z

        fit = np.polyfit(x, z, 2)

        self.assertAlmostEqual(fit[0], 0, places=1)  # x**2
        self.assertAlmostEqual(fit[1], slope, places=1)  # x
        self.assertAlmostEqual(fit[2], offset, places=1)  # const
Exemple #6
0
    def test_linear_baseline_no_spikes(self):
        x = np.arange(0, 1000, 1)
        slope = 2.
        offset = 10.

        y = offset + slope * x
        y += np.random.random(1000) * 0.5 - 0.25

        z = arPLS(y)
        d = y - z

        fit = np.polyfit(x, z, 2)

        self.assertAlmostEqual(fit[0], 0, places=1)  # x**2
        self.assertAlmostEqual(fit[1], slope, places=1)  # x
        self.assertAlmostEqual(fit[2] - offset, 0., places=1)  # const

        f = np.poly1d(fit)
        y_sub = y - f(x)
        z_sub = z - f(x)

        # test that it is smoother
        self.assertAlmostEqual(np.mean(z_sub), 0., places=3)
        self.assertLess(np.std(z_sub, ddof=1), np.std(y_sub, ddof=1))
Exemple #7
0
    def remove_baseline(self, ydata):
        baseline = spyctra.arPLS(ydata, lambda_=1.e3)
        diff = np.array(ydata) - np.array(baseline)

        return baseline, diff