def production_model():  # figure 3

    plt.close('all')
    cols = ['prod24h_before', 'Tout24hdiff', 'vWind24hdiff', 'sunRad24hdiff']

    ts1 = ens.gen_hourly_timesteps(dt.datetime(2015, 12, 17, 1),
                                   dt.datetime(2016, 1, 15, 0))
    ts2 = ens.gen_hourly_timesteps(dt.datetime(2016, 1, 20, 1),
                                   dt.datetime(2016, 2, 5, 0))

    #load the data
    fit_data = ens.repack_ens_mean_as_df()
    fit_data['prod24h_before'] = sq.fetch_production(
        ts1[0] + dt.timedelta(days=-1), ts1[-1] + dt.timedelta(days=-1))

    fit_data['Tout24hdiff'] = fit_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    fit_data['vWind24hdiff'] = fit_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    fit_data['sunRad24hdiff'] = fit_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)

    vali_data = ens.repack_ens_mean_as_df(ts2[0], ts2[-1])
    vali_data['prod24h_before'] = sq.fetch_production(
        ts2[0] + dt.timedelta(days=-1), ts2[-1] + dt.timedelta(days=-1))
    vali_data['Tout24hdiff'] = vali_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    vali_data['vWind24hdiff'] = vali_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    vali_data['sunRad24hdiff'] = vali_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)

    # correct error in production:
    new_val = (vali_data['prod'][116] + vali_data['prod'][116]) / 2
    vali_data['prod'][116] = new_val
    vali_data['prod'][117] = new_val
    vali_data['prod24h_before'][116 + 24] = new_val
    vali_data['prod24h_before'][117 + 24] = new_val

    # do the fit
    X = fit_data[cols]
    y = fit_data['prod']
    res = mlin_regression(y, X, add_const=False)

    fig, [ax1, ax2] = plt.subplots(2,
                                   1,
                                   sharex=True,
                                   figsize=(dcolwidth, 0.57 * dcolwidth),
                                   gridspec_kw={'height_ratios': [4, 1]})

    # load ensemble data
    ens_data1 = ens.load_ens_timeseries_as_df(ts_start=ts1[0], ts_end=ts1[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data1['prod24h_before'] = fit_data['prod24h_before']
    ens_data1_24h_before =  ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data2 = ens.load_ens_timeseries_as_df(ts_start=ts2[0], ts_end=ts2[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data2['prod24h_before'] = vali_data['prod24h_before']
    ens_data2_24h_before = ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad'])
    for i in range(25):
        for v in ['Tout', 'vWind', 'sunRad']:
            key_raw = v + str(i)
            key_diff = v + '24hdiff' + str(i)
            ens_data1[
                key_diff] = ens_data1[key_raw] - ens_data1_24h_before[key_raw]
            ens_data2[
                key_diff] = ens_data2[key_raw] - ens_data2_24h_before[key_raw]

    all_ens_data = pd.concat([ens_data1, ens_data2])
    all_ts = ts1 + ts2
    #
    #
    # calculate production for each ensemble member
    ens_prods = np.zeros((len(all_ts), 25))
    for i in range(25):
        ens_cols = ['Tout24hdiff' + str(i), 'vWind24hdiff' + str(i),\
                    'sunRad24hdiff' + str(i), 'prod24h_before']
        ens_params = pd.Series({
            'Tout24hdiff' + str(i):
            res.params['Tout24hdiff'],
            'vWind24hdiff' + str(i):
            res.params['vWind24hdiff'],
            'sunRad24hdiff' + str(i):
            res.params['sunRad24hdiff'],
            'prod24h_before':
            res.params['prod24h_before']
        })
        ens_prods[:, i] = linear_map(all_ens_data, ens_params, ens_cols)

    # calculate combined confint
    ens_std = ens_prods.std(axis=1)
    vali_resid = linear_map(vali_data, res.params, cols) - vali_data['prod']
    vali_resid_corrig = vali_resid - np.sign(
        vali_resid) * 1.9599 * ens_std[len(ts1):]
    #mean_conf_int_spread = (vali_resid_corrig.quantile(0.95) - vali_resid_corrig.quantile(0.05))/2 # this conf_int is not used anymore

    fit_resid = res.resid
    fit_resid_corrig = fit_resid - np.sign(
        fit_resid) * 1.9599 * ens_std[0:len(ts1)]
    conf_int_spread_lower = -fit_resid_corrig.quantile(0.025)
    conf_int_spread_higher = fit_resid_corrig.quantile(0.975)

    combined_conf_ints = conf_int_spread_lower + conf_int_spread_higher + 2 * 1.9599 * ens_std
    all_prod_model = np.concatenate(
        [res.fittedvalues,
         linear_map(vali_data, res.params, cols)])
    combined_ub95 = all_prod_model + conf_int_spread_higher + 1.9599 * ens_std
    combined_lb95 = all_prod_model - (conf_int_spread_lower + 1.9599 * ens_std)

    # plot confint
    ax1.fill_between(all_ts[len(ts1):],
                     combined_lb95[len(ts1):],
                     combined_ub95[len(ts1):],
                     label='95% prediction intervals')
    ax1.fill_between(all_ts[len(ts1):],
                     all_prod_model[len(ts1):] - 1.9599 * ens_std[len(ts1):],
                     all_prod_model[len(ts1):] + 1.9599 * ens_std[len(ts1):],
                     facecolor='grey',
                     label='Weather ensemble 95% conf. int.')

    # plot ensempble models
    ax1.plot_date(all_ts[len(ts1):], ens_prods[len(ts1):], '-', lw=0.5)

    ax1.plot_date(ts2,
                  vali_data['prod'],
                  'k-',
                  lw=2,
                  label='Historical production')
    ax1.plot_date(ts2,
                  linear_map(vali_data, res.params, cols),
                  '-',
                  c=red,
                  lw=2,
                  label='Production model')
    ax1.set_ylabel('Production [MW]', size=8)
    ax1.tick_params(axis='both', which='major', labelsize=8)
    ax1.xaxis.set_major_formatter(DateFormatter('%b %d'))
    ax1.legend(loc=1, prop={'size': 8})
    ax1.set_ylim([300, 1100])

    N = conf_int_spread_higher + 1.9599 * ens_std[len(ts1):].max()
    ax2.fill_between(ts2,
                     -(1.9599 * ens_std[len(ts1):] + conf_int_spread_lower) /
                     N,
                     -1.9599 * ens_std[len(ts1):] / N,
                     alpha=0.5)
    ax2.fill_between(ts2,
                     -1.9599 * ens_std[len(ts1):] / N,
                     np.zeros(len(ts2)),
                     facecolor='grey',
                     alpha=0.5)
    ax2.fill_between(ts2, 1.9599 * ens_std[len(ts1):] / N, facecolor='grey')
    ax2.fill_between(ts2, 1.9599 * ens_std[len(ts1):] / N,
                     (conf_int_spread_higher + 1.9599 * ens_std[len(ts1):]) /
                     N)
    ax2.set_ylabel('Prediction intervals \n[normalized]', size=8)
    ax2.tick_params(axis='y', which='major', labelsize=8)
    ax2.set_xlim(dt.datetime(2016, 1, 20, 0), dt.datetime(2016, 2, 5, 0))
    fig.tight_layout()
    print "Min_normalized pos conf bound. ", np.min(1.9599 *
                                                    ens_std[len(ts1):] / N +
                                                    conf_int_spread_higher / N)

    print "MAE = " + str(mae(vali_resid))
    print "MAPE = " + str(mape(vali_resid, vali_data['prod']))
    print "RMSE = " + str(rmse(vali_resid))
    print "ME = " + str(np.mean(vali_resid))

    print "MAE (fit) = " + str(mae(res.resid))
    print "MAPE (fit) = " + str(mape(res.resid, fit_data['prod']))
    print "RMSE (fit)= " + str(rmse(res.resid))
    print "ME (fit)= " + str(np.mean(res.resid))

    print "Width of const blue bands (MW)", conf_int_spread_lower, conf_int_spread_higher

    plt.savefig('Q:/Projekter/Ens Article 1/figures/production_model.pdf',
                dpi=400)

    EO3_fc1 = sq.fetch_EO3_midnight_forecast(ts1[0], ts1[-1])
    EO3_fc2 = sq.fetch_EO3_midnight_forecast(ts2[0], ts2[-1])
    EO3_err = EO3_fc2 - vali_data['prod']
    EO3_err_fit = EO3_fc1 - fit_data['prod']
    print "MAE (EO3) = " + str(mae(EO3_err))
    print "MAPE (EO3) = " + str(mape(EO3_err, vali_data['prod']))
    print "RMSE (EO3)= " + str(rmse(EO3_err))
    print "ME (EO3)= " + str(np.mean(EO3_err))

    print "MAE (EO3_fit) = " + str(mae(EO3_err_fit))
    print "MAPE (EO3_fit) = " + str(mape(EO3_err_fit, fit_data['prod']))
    print "RMSE (EO3_fit)= " + str(rmse(EO3_err_fit))
    print "ME (EO3_fit)= " + str(np.mean(EO3_err_fit))

    print np.min(combined_conf_ints[len(ts1):] / combined_conf_ints.max())
    np.savez('combined_conf_int',
             combined_conf_int=(conf_int_spread_higher + 1.9599 * ens_std),
             timesteps=all_ts)

    print "Corr coeff: vali ", np.corrcoef(
        vali_data['prod'], linear_map(vali_data, res.params, cols))[0, 1]
    print "Corr coeff: vali EO3 ", np.corrcoef(vali_data['prod'], EO3_fc2)[0,
                                                                           1]
    print "Corr coeff: fit ", np.corrcoef(fit_data['prod'],
                                          res.fittedvalues)[0, 1]
    print "Corr coeff: fit EO3 ", np.corrcoef(fit_data['prod'], EO3_fc1)[0, 1]

    print "% of actual production in vali period above upper", float(
        len(
            np.where(vali_data['prod'] >
                     (conf_int_spread_higher + 1.9599 * ens_std[len(ts1):] +
                      linear_map(vali_data, res.params, cols)))[0])) / len(ts2)
    print "plus minus: ", 0.5 / len(ts2)

    print "% of actual production in vali period below lower", float(
        len(
            np.where(vali_data['prod'] <
                     (linear_map(vali_data, res.params, cols) -
                      (conf_int_spread_lower + 1.9599 * ens_std[len(ts1):])))
            [0])) / len(ts2)
    print "plus minus: ", 0.5 / len(ts2)

    return res, fit_data
def second_ens_prod_fig():
    """ This plot is based on a production model taking into account:
        the production 24 hours before as well as the change in
        temparature, windspeed and solar radiotion from 24 hours ago to now.
        
        """

    plt.close('all')
    cols = ['prod24h_before', 'Tout24hdiff', 'vWind24hdiff', 'sunRad24hdiff']

    ts1 = ens.gen_hourly_timesteps(dt.datetime(2015, 12, 17, 1),
                                   dt.datetime(2016, 1, 15, 0))
    ts2 = ens.gen_hourly_timesteps(dt.datetime(2016, 1, 20, 1),
                                   dt.datetime(2016, 2, 5, 0))

    #load the data
    fit_data = ens.repack_ens_mean_as_df()
    fit_data['prod24h_before'] = sq.fetch_production(
        ts1[0] + dt.timedelta(days=-1), ts1[-1] + dt.timedelta(days=-1))

    fit_data['Tout24hdiff'] = fit_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    fit_data['vWind24hdiff'] = fit_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    fit_data['sunRad24hdiff'] = fit_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)

    vali_data = ens.repack_ens_mean_as_df(ts2[0], ts2[-1])
    vali_data['prod24h_before'] = sq.fetch_production(
        ts2[0] + dt.timedelta(days=-1), ts2[-1] + dt.timedelta(days=-1))
    vali_data['Tout24hdiff'] = vali_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    vali_data['vWind24hdiff'] = vali_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    vali_data['sunRad24hdiff'] = vali_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)

    # correct error in production:
    new_val = (vali_data['prod'][116] + vali_data['prod'][116]) / 2
    vali_data['prod'][116] = new_val
    vali_data['prod'][117] = new_val
    vali_data['prod24h_before'][116 + 24] = new_val
    vali_data['prod24h_before'][117 + 24] = new_val

    # do the fit
    X = fit_data[cols]
    y = fit_data['prod']
    res = mlin_regression(y, X, add_const=False)

    fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(40, 20))

    # load ensemble data
    ens_data1 = ens.load_ens_timeseries_as_df(ts_start=ts1[0], ts_end=ts1[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data1['prod24h_before'] = fit_data['prod24h_before']
    ens_data1_24h_before =  ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data2 = ens.load_ens_timeseries_as_df(ts_start=ts2[0], ts_end=ts2[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data2['prod24h_before'] = vali_data['prod24h_before']
    ens_data2_24h_before = ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad'])
    for i in range(25):
        for v in ['Tout', 'vWind', 'sunRad']:
            key_raw = v + str(i)
            key_diff = v + '24hdiff' + str(i)
            ens_data1[
                key_diff] = ens_data1[key_raw] - ens_data1_24h_before[key_raw]
            ens_data2[
                key_diff] = ens_data2[key_raw] - ens_data2_24h_before[key_raw]

    all_ens_data = pd.concat([ens_data1, ens_data2])
    all_ts = ts1 + ts2
    #
    #
    # calculate production for each ensemble member
    ens_prods = np.zeros((len(all_ts), 25))
    for i in range(25):
        ens_cols = ['Tout24hdiff' + str(i), 'vWind24hdiff' + str(i),\
                    'sunRad24hdiff' + str(i), 'prod24h_before']
        ens_params = pd.Series({
            'Tout24hdiff' + str(i):
            res.params['Tout24hdiff'],
            'vWind24hdiff' + str(i):
            res.params['vWind24hdiff'],
            'sunRad24hdiff' + str(i):
            res.params['sunRad24hdiff'],
            'prod24h_before':
            res.params['prod24h_before']
        })
        ens_prods[:, i] = linear_map(all_ens_data, ens_params, ens_cols)

    # calculate combined confint
    ens_std = ens_prods.std(axis=1)
    vali_resid = linear_map(vali_data, res.params, cols) - vali_data['prod']
    vali_resid_corrig = vali_resid - np.sign(
        vali_resid) * 1.9599 * ens_std[len(ts1):]
    mean_conf_int_spread = (vali_resid_corrig.quantile(0.95) -
                            vali_resid_corrig.quantile(0.05)) / 2

    combined_conf_int = mean_conf_int_spread + 1.9599 * ens_std
    all_prod_model = np.concatenate(
        [res.fittedvalues,
         linear_map(vali_data, res.params, cols)])
    combined_ub95 = all_prod_model + combined_conf_int
    combined_lb95 = all_prod_model - combined_conf_int

    # plot confint
    ax1.fill_between(all_ts,
                     combined_lb95,
                     combined_ub95,
                     label='Combined 95% conf. int.')
    ax1.fill_between(all_ts,
                     all_prod_model - 1.9599 * ens_std,
                     all_prod_model + 1.9599 * ens_std,
                     facecolor='grey',
                     label='Ensemble 95% conf. int.')

    # plot ensempble models
    ax1.plot_date(all_ts, ens_prods, '-', lw=0.5)

    ax1.plot_date(ts1, y, 'k-', lw=2, label='Actual production')
    ax1.plot_date(ts1,
                  res.fittedvalues,
                  'r-',
                  lw=2,
                  label='Model on ensemble mean')

    ax1.plot_date(ts2, vali_data['prod'], 'k-', lw=2, label='')
    ax1.plot_date(ts2, linear_map(vali_data, res.params, cols), 'r-', lw=2)
    ax1.set_ylabel('[MW]')
    ax1.legend(loc=2)
    ax1.set_ylim([0, 1100])

    ax2.plot_date(ts1, res.resid, '-', label='Residual, fitted data')
    ax2.plot_date(ts2, vali_resid, '-', label='Residual, validation data')
    ax2.set_ylabel('[MW]')
    ax2.legend(loc=2)
    ax2.set_ylim([-550, 550])
    print "MAE = " + str(mae(vali_resid))
    print "MAPE = " + str(mape(vali_resid, vali_data['prod']))
    print "RMSE = " + str(rmse(vali_resid))
    print "ME = " + str(np.mean(vali_resid))

    print "MAE (fit) = " + str(mae(res.resid))
    print "MAPE (fit) = " + str(mape(res.resid, fit_data['prod']))
    print "RMSE (fit)= " + str(rmse(res.resid))
    print "ME (fit)= " + str(np.mean(res.resid))

    plt.savefig('figures/ens_prod_models_v2.pdf', dpi=600)
    plt.figure()
    plt.plot_date(all_ts, ens_std)
    plt.ylabel('Std. of ensemble production models [MW]')
    plt.savefig('figures/std_ens_prod_models.pdf', dpi=600)
    #

    vali_ens_std = ens_std[len(ts1):]
    sns.jointplot(x=pd.Series(vali_ens_std), y=np.abs(vali_resid))
    sns.jointplot(x=vali_data['prod'],
                  y=pd.Series(linear_map(vali_data, res.params, cols)))

    EO3_fc1 = sq.fetch_EO3_midnight_forecast(ts1[0], ts1[-1])
    EO3_fc2 = sq.fetch_EO3_midnight_forecast(ts2[0], ts2[-1])
    plt.figure()
    plt.plot_date(ts1, fit_data['prod'], 'k-', label='Actual production')
    plt.plot_date(ts2, vali_data['prod'], 'k-')
    plt.plot_date(ts1, EO3_fc1, 'r-', label='EO3 forecast')
    plt.plot_date(ts2, EO3_fc2, 'r-')
    EO3_err = EO3_fc2 - vali_data['prod']
    EO3_err_fit = EO3_fc1 - fit_data['prod']
    print "MAE (EO3) = " + str(mae(EO3_err))
    print "MAPE (EO3) = " + str(mape(EO3_err, vali_data['prod']))
    print "RMSE (EO3)= " + str(rmse(EO3_err))
    print "ME (EO3)= " + str(np.mean(EO3_err))

    print "MAE (EO3_fit) = " + str(mae(EO3_err_fit))
    print "MAPE (EO3_fit) = " + str(mape(EO3_err_fit, fit_data['prod']))
    print "RMSE (EO3_fit)= " + str(rmse(EO3_err_fit))
    print "ME (EO3_fit)= " + str(np.mean(EO3_err_fit))

    sns.jointplot(x=pd.Series(vali_ens_std), y=np.abs(EO3_err))

    plt.figure(figsize=(20, 10))
    plt.subplot(2, 1, 1)
    plt.plot_date(all_ts, combined_conf_int / combined_conf_int.max(), '-')
    plt.ylabel('Model + ensemble uncertainty \n [normalized]')
    plt.ylim(0, 1)
    plt.subplot(2, 1, 2)
    plt.plot_date(all_ts,
                  (1 - 0.2 * combined_conf_int / combined_conf_int.max()),
                  '-',
                  label='Dynamic setpoint')
    plt.plot_date(all_ts,
                  0.8 * np.ones(len(all_ts)),
                  '--',
                  label='Static setpoint')
    plt.ylabel(
        'Setpoint for pump massflow \n temperature [fraction of max pump cap]')
    plt.legend()
    plt.ylim(.7, 1)
    plt.savefig('figures/setpoint.pdf')

    return vali_data, fit_data, res, ens_std, vali_resid
def production_model(): # figure 3
    
    plt.close('all')
    cols = ['prod24h_before', 'Tout24hdiff', 'vWind24hdiff', 'sunRad24hdiff']
        
    ts1 = ens.gen_hourly_timesteps(dt.datetime(2015,12,17,1), dt.datetime(2016,1,15,0))
    ts2 = ens.gen_hourly_timesteps(dt.datetime(2016,1,20,1), dt.datetime(2016,2,5,0))
    
    #load the data
    fit_data = ens.repack_ens_mean_as_df()
    fit_data['prod24h_before'] = sq.fetch_production(ts1[0]+dt.timedelta(days=-1), ts1[-1]+dt.timedelta(days=-1))
    
    fit_data['Tout24hdiff'] = fit_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    fit_data['vWind24hdiff'] = fit_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    fit_data['sunRad24hdiff'] = fit_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)
                                    
    vali_data = ens.repack_ens_mean_as_df(ts2[0], ts2[-1])
    vali_data['prod24h_before'] = sq.fetch_production(ts2[0]+dt.timedelta(days=-1), ts2[-1]+dt.timedelta(days=-1))
    vali_data['Tout24hdiff'] = vali_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    vali_data['vWind24hdiff'] = vali_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    vali_data['sunRad24hdiff'] = vali_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)
    
    # correct error in production:
    new_val = (vali_data['prod'][116] +vali_data['prod'][116])/2
    vali_data['prod'][116] = new_val
    vali_data['prod'][117] = new_val
    vali_data['prod24h_before'][116+24] = new_val
    vali_data['prod24h_before'][117+24] = new_val
    
    
 
    # do the fit
    X = fit_data[cols]
    y = fit_data['prod']
    res = mlin_regression(y, X, add_const=False)    

    fig, [ax1, ax2] = plt.subplots(2, 1, sharex=True, figsize=(dcolwidth, 0.57*dcolwidth), gridspec_kw={'height_ratios':[4,1]})

    # load ensemble data
    ens_data1 = ens.load_ens_timeseries_as_df(ts_start=ts1[0], ts_end=ts1[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data1['prod24h_before'] = fit_data['prod24h_before']
    ens_data1_24h_before =  ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad']) 
    ens_data2 = ens.load_ens_timeseries_as_df(ts_start=ts2[0], ts_end=ts2[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data2['prod24h_before'] = vali_data['prod24h_before']
    ens_data2_24h_before = ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad']) 
    for i in range(25):
        for v in ['Tout', 'vWind', 'sunRad']:
            key_raw = v + str(i)
            key_diff = v + '24hdiff' + str(i)
            ens_data1[key_diff] = ens_data1[key_raw] - ens_data1_24h_before[key_raw]
            ens_data2[key_diff] = ens_data2[key_raw] - ens_data2_24h_before[key_raw]

    
    all_ens_data = pd.concat([ens_data1, ens_data2])
    all_ts = ts1 + ts2    
#    
#    
    # calculate production for each ensemble member
    ens_prods = np.zeros((len(all_ts), 25))
    for i in range(25):
        ens_cols = ['Tout24hdiff' + str(i), 'vWind24hdiff' + str(i),\
                    'sunRad24hdiff' + str(i), 'prod24h_before']
        ens_params = pd.Series({'Tout24hdiff' + str(i):res.params['Tout24hdiff'],
                                'vWind24hdiff' + str(i):res.params['vWind24hdiff'],
                                'sunRad24hdiff' + str(i):res.params['sunRad24hdiff'],
                                'prod24h_before':res.params['prod24h_before']})
        ens_prods[:,i] = linear_map(all_ens_data, ens_params, ens_cols)    
    
    
       
    # calculate combined confint
    ens_std = ens_prods.std(axis=1)
    vali_resid = linear_map(vali_data, res.params, cols) - vali_data['prod']
    vali_resid_corrig = vali_resid - np.sign(vali_resid)*1.9599*ens_std[len(ts1):]
    #mean_conf_int_spread = (vali_resid_corrig.quantile(0.95) - vali_resid_corrig.quantile(0.05))/2 # this conf_int is not used anymore


    fit_resid = res.resid
    fit_resid_corrig = fit_resid - np.sign(fit_resid)*1.9599*ens_std[0:len(ts1)]
    conf_int_spread_lower = - fit_resid_corrig.quantile(0.025)
    conf_int_spread_higher = fit_resid_corrig.quantile(0.975) 
    
    combined_conf_ints = conf_int_spread_lower + conf_int_spread_higher + 2*1.9599*ens_std
    all_prod_model = np.concatenate([res.fittedvalues, linear_map(vali_data, res.params, cols)])
    combined_ub95 = all_prod_model + conf_int_spread_higher + 1.9599*ens_std
    combined_lb95 = all_prod_model - (conf_int_spread_lower + 1.9599*ens_std)
    
    # plot confint
    ax1.fill_between(all_ts[len(ts1):], combined_lb95[len(ts1):], combined_ub95[len(ts1):], label='95% prediction intervals')
    ax1.fill_between(all_ts[len(ts1):], all_prod_model[len(ts1):] - 1.9599*ens_std[len(ts1):], all_prod_model[len(ts1):] + 1.9599*ens_std[len(ts1):], facecolor='grey', label='Weather ensemble 95% conf. int.')
    
    # plot ensempble models    
    ax1.plot_date(all_ts[len(ts1):], ens_prods[len(ts1):], '-', lw=0.5)    

    ax1.plot_date(ts2, vali_data['prod'], 'k-', lw=2, label='Historical production')
    ax1.plot_date(ts2, linear_map(vali_data, res.params, cols), '-', c=red, lw=2, label='Production model')
    ax1.set_ylabel('Production [MW]', size=8)
    ax1.tick_params(axis='both', which='major', labelsize=8)
    ax1.xaxis.set_major_formatter(DateFormatter('%b %d') )    
    ax1.legend(loc=1, prop={'size':8})
    ax1.set_ylim([300,1100])
    
    N = conf_int_spread_higher + 1.9599*ens_std[len(ts1):].max()
    ax2.fill_between(ts2, -(1.9599*ens_std[len(ts1):]+conf_int_spread_lower)/N, -1.9599*ens_std[len(ts1):]/N, alpha=0.5)
    ax2.fill_between(ts2, -1.9599*ens_std[len(ts1):]/N, np.zeros(len(ts2)), facecolor='grey',alpha=0.5)
    ax2.fill_between(ts2, 1.9599*ens_std[len(ts1):]/N, facecolor='grey')
    ax2.fill_between(ts2, 1.9599*ens_std[len(ts1):]/N, (conf_int_spread_higher+1.9599*ens_std[len(ts1):])/N) 
    ax2.set_ylabel('Prediction intervals \n[normalized]', size=8)
    ax2.tick_params(axis='y', which='major', labelsize=8)
    ax2.set_xlim(dt.datetime(2016,1,20,0), dt.datetime(2016,2,5,0))
    fig.tight_layout()
    print "Min_normalized pos conf bound. ", np.min(1.9599*ens_std[len(ts1):]/N+conf_int_spread_higher/N)
    
    print "MAE = " + str(mae(vali_resid))
    print "MAPE = " + str(mape(vali_resid, vali_data['prod']))
    print "RMSE = " + str(rmse(vali_resid))
    print "ME = " + str(np.mean(vali_resid))
    
    print "MAE (fit) = " + str(mae(res.resid))
    print "MAPE (fit) = " + str(mape(res.resid, fit_data['prod']))
    print "RMSE (fit)= " + str(rmse(res.resid))
    print "ME (fit)= " + str(np.mean(res.resid))
    
    print "Width of const blue bands (MW)", conf_int_spread_lower, conf_int_spread_higher

    plt.savefig('Q:/Projekter/Ens Article 1/figures/production_model.pdf', dpi=400) 

   
    EO3_fc1 = sq.fetch_EO3_midnight_forecast(ts1[0], ts1[-1])
    EO3_fc2 = sq.fetch_EO3_midnight_forecast(ts2[0], ts2[-1])
    EO3_err = EO3_fc2-vali_data['prod']
    EO3_err_fit = EO3_fc1-fit_data['prod']
    print "MAE (EO3) = " + str(mae(EO3_err))
    print "MAPE (EO3) = " + str(mape(EO3_err, vali_data['prod']))
    print "RMSE (EO3)= " + str(rmse(EO3_err))
    print "ME (EO3)= " + str(np.mean(EO3_err))
    
    print "MAE (EO3_fit) = " + str(mae(EO3_err_fit))
    print "MAPE (EO3_fit) = " + str(mape(EO3_err_fit, fit_data['prod']))
    print "RMSE (EO3_fit)= " + str(rmse(EO3_err_fit))
    print "ME (EO3_fit)= " + str(np.mean(EO3_err_fit))
    
    print np.min(combined_conf_ints[len(ts1):]/combined_conf_ints.max())
    np.savez('combined_conf_int', combined_conf_int=(conf_int_spread_higher+1.9599*ens_std), timesteps=all_ts)

    print "Corr coeff: vali ", np.corrcoef(vali_data['prod'],linear_map(vali_data, res.params, cols))[0,1]
    print "Corr coeff: vali EO3 ", np.corrcoef(vali_data['prod'], EO3_fc2)[0,1]
    print "Corr coeff: fit ", np.corrcoef(fit_data['prod'],res.fittedvalues)[0,1]
    print "Corr coeff: fit EO3 ", np.corrcoef(fit_data['prod'], EO3_fc1)[0,1]
    
    print "% of actual production in vali period above upper", float(len(np.where(vali_data['prod']>(conf_int_spread_higher+1.9599*ens_std[len(ts1):]+linear_map(vali_data, res.params, cols)))[0]))/len(ts2)
    print "plus minus: ", 0.5/len(ts2)
    
    print "% of actual production in vali period below lower", float(len(np.where(vali_data['prod']<(linear_map(vali_data, res.params, cols)-(conf_int_spread_lower+1.9599*ens_std[len(ts1):])))[0]))/len(ts2)
    print "plus minus: ", 0.5/len(ts2)
    
    return res, fit_data
def second_ens_prod_fig():
    """ This plot is based on a production model taking into account:
        the production 24 hours before as well as the change in
        temparature, windspeed and solar radiotion from 24 hours ago to now.
        
        """
        
    plt.close('all')
    cols = ['prod24h_before', 'Tout24hdiff', 'vWind24hdiff', 'sunRad24hdiff']
        
    ts1 = ens.gen_hourly_timesteps(dt.datetime(2015,12,17,1), dt.datetime(2016,1,15,0))
    ts2 = ens.gen_hourly_timesteps(dt.datetime(2016,1,20,1), dt.datetime(2016,2,5,0))
    
    #load the data
    fit_data = ens.repack_ens_mean_as_df()
    fit_data['prod24h_before'] = sq.fetch_production(ts1[0]+dt.timedelta(days=-1), ts1[-1]+dt.timedelta(days=-1))
    
    fit_data['Tout24hdiff'] = fit_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    fit_data['vWind24hdiff'] = fit_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    fit_data['sunRad24hdiff'] = fit_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)
                                    
    vali_data = ens.repack_ens_mean_as_df(ts2[0], ts2[-1])
    vali_data['prod24h_before'] = sq.fetch_production(ts2[0]+dt.timedelta(days=-1), ts2[-1]+dt.timedelta(days=-1))
    vali_data['Tout24hdiff'] = vali_data['Tout'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout']).mean(axis=1)
    vali_data['vWind24hdiff'] = vali_data['vWind'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['vWind']).mean(axis=1)
    vali_data['sunRad24hdiff'] = vali_data['sunRad'] \
                                - ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['sunRad']).mean(axis=1)
    
    # correct error in production:
    new_val = (vali_data['prod'][116] +vali_data['prod'][116])/2
    vali_data['prod'][116] = new_val
    vali_data['prod'][117] = new_val
    vali_data['prod24h_before'][116+24] = new_val
    vali_data['prod24h_before'][117+24] = new_val
    
    
 
    # do the fit
    X = fit_data[cols]
    y = fit_data['prod']
    res = mlin_regression(y, X, add_const=False)    
    
    fig, [ax1, ax2] = plt.subplots(2,1, figsize=(40,20))
 
    # load ensemble data
    ens_data1 = ens.load_ens_timeseries_as_df(ts_start=ts1[0], ts_end=ts1[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data1['prod24h_before'] = fit_data['prod24h_before']
    ens_data1_24h_before =  ens.load_ens_timeseries_as_df(\
                                    ts_start=ts1[0]+dt.timedelta(days=-1),\
                                    ts_end=ts1[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad']) 
    ens_data2 = ens.load_ens_timeseries_as_df(ts_start=ts2[0], ts_end=ts2[-1],\
                                             weathervars=['Tout', 'vWind', 'sunRad'])
    ens_data2['prod24h_before'] = vali_data['prod24h_before']
    ens_data2_24h_before = ens.load_ens_timeseries_as_df(\
                                    ts_start=ts2[0]+dt.timedelta(days=-1),\
                                    ts_end=ts2[-1]+dt.timedelta(days=-1), \
                                    weathervars=['Tout', 'vWind', 'sunRad']) 
    for i in range(25):
        for v in ['Tout', 'vWind', 'sunRad']:
            key_raw = v + str(i)
            key_diff = v + '24hdiff' + str(i)
            ens_data1[key_diff] = ens_data1[key_raw] - ens_data1_24h_before[key_raw]
            ens_data2[key_diff] = ens_data2[key_raw] - ens_data2_24h_before[key_raw]

    
    all_ens_data = pd.concat([ens_data1, ens_data2])
    all_ts = ts1 + ts2    
#    
#    
    # calculate production for each ensemble member
    ens_prods = np.zeros((len(all_ts), 25))
    for i in range(25):
        ens_cols = ['Tout24hdiff' + str(i), 'vWind24hdiff' + str(i),\
                    'sunRad24hdiff' + str(i), 'prod24h_before']
        ens_params = pd.Series({'Tout24hdiff' + str(i):res.params['Tout24hdiff'],
                                'vWind24hdiff' + str(i):res.params['vWind24hdiff'],
                                'sunRad24hdiff' + str(i):res.params['sunRad24hdiff'],
                                'prod24h_before':res.params['prod24h_before']})
        ens_prods[:,i] = linear_map(all_ens_data, ens_params, ens_cols)    
    
    
       
    # calculate combined confint
    ens_std = ens_prods.std(axis=1)
    vali_resid = linear_map(vali_data, res.params, cols) - vali_data['prod']
    vali_resid_corrig = vali_resid - np.sign(vali_resid)*1.9599*ens_std[len(ts1):]
    mean_conf_int_spread = (vali_resid_corrig.quantile(0.95) - vali_resid_corrig.quantile(0.05))/2
    
    
    combined_conf_int = mean_conf_int_spread + 1.9599*ens_std
    all_prod_model = np.concatenate([res.fittedvalues, linear_map(vali_data, res.params, cols)])
    combined_ub95 = all_prod_model + combined_conf_int
    combined_lb95 = all_prod_model - combined_conf_int 
    
    # plot confint
    ax1.fill_between(all_ts, combined_lb95, combined_ub95, label='Combined 95% conf. int.')
    ax1.fill_between(all_ts, all_prod_model - 1.9599*ens_std, all_prod_model + 1.9599*ens_std, facecolor='grey', label='Ensemble 95% conf. int.')
    
    # plot ensempble models    
    ax1.plot_date(all_ts, ens_prods, '-', lw=0.5)    
    
    ax1.plot_date(ts1, y, 'k-', lw=2, label='Actual production')
    ax1.plot_date(ts1, res.fittedvalues,'r-', lw=2, label='Model on ensemble mean')
         
    ax1.plot_date(ts2, vali_data['prod'], 'k-', lw=2, label='')
    ax1.plot_date(ts2, linear_map(vali_data, res.params, cols), 'r-', lw=2)
    ax1.set_ylabel('[MW]')
    ax1.legend(loc=2)
    ax1.set_ylim([0,1100])
    
    
    ax2.plot_date(ts1, res.resid, '-', label='Residual, fitted data')
    ax2.plot_date(ts2, vali_resid, '-', label='Residual, validation data')
    ax2.set_ylabel('[MW]')
    ax2.legend(loc=2)
    ax2.set_ylim([-550, 550])
    print "MAE = " + str(mae(vali_resid))
    print "MAPE = " + str(mape(vali_resid, vali_data['prod']))
    print "RMSE = " + str(rmse(vali_resid))
    print "ME = " + str(np.mean(vali_resid))
    
    print "MAE (fit) = " + str(mae(res.resid))
    print "MAPE (fit) = " + str(mape(res.resid, fit_data['prod']))
    print "RMSE (fit)= " + str(rmse(res.resid))
    print "ME (fit)= " + str(np.mean(res.resid))

    plt.savefig('figures/ens_prod_models_v2.pdf', dpi=600) 
    plt.figure()
    plt.plot_date(all_ts, ens_std)
    plt.ylabel('Std. of ensemble production models [MW]')
    plt.savefig('figures/std_ens_prod_models.pdf', dpi=600) 
    # 
    
    vali_ens_std = ens_std[len(ts1):]
    sns.jointplot(x=pd.Series(vali_ens_std), y=np.abs(vali_resid))
    sns.jointplot(x=vali_data['prod'], y=pd.Series(linear_map(vali_data, res.params, cols)))
   
    EO3_fc1 = sq.fetch_EO3_midnight_forecast(ts1[0], ts1[-1])
    EO3_fc2 = sq.fetch_EO3_midnight_forecast(ts2[0], ts2[-1])
    plt.figure()
    plt.plot_date(ts1, fit_data['prod'], 'k-', label='Actual production')
    plt.plot_date(ts2, vali_data['prod'], 'k-')
    plt.plot_date(ts1, EO3_fc1, 'r-', label='EO3 forecast')
    plt.plot_date(ts2, EO3_fc2, 'r-')
    EO3_err = EO3_fc2-vali_data['prod']
    EO3_err_fit = EO3_fc1-fit_data['prod']
    print "MAE (EO3) = " + str(mae(EO3_err))
    print "MAPE (EO3) = " + str(mape(EO3_err, vali_data['prod']))
    print "RMSE (EO3)= " + str(rmse(EO3_err))
    print "ME (EO3)= " + str(np.mean(EO3_err))
    
    print "MAE (EO3_fit) = " + str(mae(EO3_err_fit))
    print "MAPE (EO3_fit) = " + str(mape(EO3_err_fit, fit_data['prod']))
    print "RMSE (EO3_fit)= " + str(rmse(EO3_err_fit))
    print "ME (EO3_fit)= " + str(np.mean(EO3_err_fit))
     
    sns.jointplot(x=pd.Series(vali_ens_std), y=np.abs(EO3_err))
    
    plt.figure(figsize=(20,10))
    plt.subplot(2,1,1)
    plt.plot_date(all_ts, combined_conf_int/combined_conf_int.max(), '-')
    plt.ylabel('Model + ensemble uncertainty \n [normalized]')
    plt.ylim(0,1)    
    plt.subplot(2,1,2)
    plt.plot_date(all_ts, (1-0.2*combined_conf_int/combined_conf_int.max()), '-', label='Dynamic setpoint')
    plt.plot_date(all_ts, 0.8*np.ones(len(all_ts)), '--', label='Static setpoint')
    plt.ylabel('Setpoint for pump massflow \n temperature [fraction of max pump cap]')
    plt.legend()
    plt.ylim(.7,1)
    plt.savefig('figures/setpoint.pdf')

    
    return vali_data, fit_data, res, ens_std, vali_resid
fit_y = fit_data['prod']
results = []
for columns in all_combs:
        X = fit_data[columns]
        res = mlin_regression(fit_y,X, add_const=False)
        results.append(res)

vali_preds = []
for cols in all_combs:
    vali_pred = linear_map(vali_data, res.params, cols)
    vali_preds.append(vali_pred)

rmses = [rmse(vp-vali_data['prod']) for vp in vali_preds]
aics = [r.aic for r in results]

for c,r,a in zip(all_combs, rmses, aics):
    print c,r,a
    
right_columns = ['prod24h_before', 'Tout24hdiff', 'vWind24hdiff', 'sunRad24hdiff']
test_pred = linear_map(test_data, results[all_combs.index(right_columns)].params, right_columns)
print "Test RMSE", rmse(test_pred-test_data['prod'])
print "Test MAE", mae(test_pred-test_data['prod'])
print "Test MAPE", mape(test_pred-test_data['prod'], test_data['prod'])

EO3_fc_test = sq.fetch_EO3_midnight_forecast(test_ts[0], test_ts[-1])
EO3_err = EO3_fc_test-test_data['prod']

print "MAE (EO3) = " + str(mae(EO3_err))
print "MAPE (EO3) = " + str(mape(EO3_err, test_data['prod']))
print "RMSE (EO3)= " + str(rmse(EO3_err))
print "ME (EO3)= " + str(np.mean(EO3_err))
    res = mlin_regression(fit_y, X, add_const=False)
    results.append(res)

vali_preds = []
for cols in all_combs:
    vali_pred = linear_map(vali_data, res.params, cols)
    vali_preds.append(vali_pred)

rmses = [rmse(vp - vali_data['prod']) for vp in vali_preds]
aics = [r.aic for r in results]

for c, r, a in zip(all_combs, rmses, aics):
    print c, r, a

right_columns = [
    'prod24h_before', 'Tout24hdiff', 'vWind24hdiff', 'sunRad24hdiff'
]
test_pred = linear_map(test_data,
                       results[all_combs.index(right_columns)].params,
                       right_columns)
print "Test RMSE", rmse(test_pred - test_data['prod'])
print "Test MAE", mae(test_pred - test_data['prod'])
print "Test MAPE", mape(test_pred - test_data['prod'], test_data['prod'])

EO3_fc_test = sq.fetch_EO3_midnight_forecast(test_ts[0], test_ts[-1])
EO3_err = EO3_fc_test - test_data['prod']

print "MAE (EO3) = " + str(mae(EO3_err))
print "MAPE (EO3) = " + str(mape(EO3_err, test_data['prod']))
print "RMSE (EO3)= " + str(rmse(EO3_err))
print "ME (EO3)= " + str(np.mean(EO3_err))