@理解: """ import pickle from src.base.config import save_model, model_file_path, model_file_prefix from src.base.tools import beep_end, show_title # ---------------------------------------------------------------------- def main(): pass if __name__ == '__main__': main() beep_end() def save_model_m0(model): if save_model: show_title("保存网络模型") file_name = model_file_path + model_file_prefix + 'm0.h5' print("保存原始模型:{} →".format(file_name), end='') model.save(file_name) print("模型保存成功。") def save_model_m1(history, model): if save_model: show_title("保存网络模型") file_name = model_file_path + model_file_prefix + 'm1.bin'
from src.base.tools import beep_end, show_title # ---------------------------------------------------------------------- def main(): show_title("数据清洗开始...") from src.data.export_data import export_base_data x_data, y_data = export_base_data() # from src.data.load_data import load_base_data # x_data, y_data = load_base_data() from src.data.export_data import export_train_test_data x_train, y_train = export_train_test_data(x_data, y_data) # from src.data.load_data import load_train_data # x_train, y_train = load_train_data() # export_train_balance(x_train, y_train) from src.data.export_data import export_val_data x_train_val, y_train_val = export_val_data(x_train, y_train) # from src.data.load_data import load_val_data # x_train_val, y_train_val = load_val_data() # export_val_balance(x_train_val, y_train_val) show_title("数据清洗完成!") # ---------------------------------------------------------------------- if __name__ == '__main__': main() beep_end() # 运行结束的提醒
from src.model.save_model import save_model_m1 save_model_m1(history, model) from src.data.load_data import load_test_data show_title("加载与填充测试数据集") x_test, y_test = load_test_data() x_test = single_data_reshape(day_feature_idx, x_test, y_test.shape[0]) results = model.evaluate(x_test, y_test, verbose=0) predictions = model.predict(x_test).squeeze() show_result(results, predictions, y_test) show_title("没有验证集训练网络模型,训练次数减半") from src.data.load_data import load_train_data show_title("加载与填充{}".format(train_data_type)) x_train, y_train = load_train_data() x_train = single_data_reshape(day_feature_idx, x_train, y_train.shape[0]) history = model.fit(x_train, y_train, epochs=epochs // 2, batch_size=batch_size, verbose=2) from src.model.save_model import save_model_m2 save_model_m2(history, model) results = model.evaluate(x_test, y_test, verbose=0) predictions = model.predict(x_test).squeeze() show_result(results, predictions, y_test) pass if __name__ == '__main__': # 运行结束的提醒 tools.beep_end()