def train_cnns(): """ 训练CNNs模型用于文本分类 :return: """ # Parameters # ================================================== # Data loading params tf.flags.DEFINE_float( "train_size", .1, "Percentage of the training data to use for validation") tf.flags.DEFINE_string("train_path", r'../../../dataset/train', "Data source.") tf.flags.DEFINE_string("dev_path", r'../../../dataset/dev', "Data source.") tf.flags.DEFINE_string('vocab_path', r'../../../dataset/vocab', 'vocabulary path') tf.flags.DEFINE_integer('sequence_length', 500, 'length of each sequence') tf.flags.DEFINE_integer("num_tags", 14, "number classes of datasets.") tf.flags.DEFINE_string('out_dir', '../../models', 'output directory') # Model Hyperparameters tf.flags.DEFINE_integer( "embedding_dim", 200, "Dimensionality of character embedding (default: 128)") tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')") tf.flags.DEFINE_integer( "num_filters", 200, "Number of filters per filter size (default: 128)") tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)") tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularization lambda (default: 0.0)") tf.flags.DEFINE_float('learning_rate', 0.01, 'learning_rate of gradient') # Training parameters tf.flags.DEFINE_integer("batch_size", 32, "Batch Size (default: 64)") tf.flags.DEFINE_integer("num_epochs", 100, "Number of training epochs (default: 200)") tf.flags.DEFINE_integer( "evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)") tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)") tf.flags.DEFINE_integer("num_checkpoints", 5, "Number of checkpoints to store (default: 5)") # Misc Parameters tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print('\nParameters') for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") # 加载数据 # Generate batches # train_manager = batch_manager(FLAGS.train_path, FLAGS.sequence_length, FLAGS.batch_size, FLAGS.num_epochs) # dev_manager = batch_manager(FLAGS.dev_path, FLAGS.sequence_length, FLAGS.batch_size, 1) x_train, y_train = pickle.load(open(FLAGS.train_path, 'rb')) x_dev, y_dev = pickle.load(open(FLAGS.dev_path, 'rb')) vocab_processer = learn.preprocessing.VocabularyProcessor.restore( FLAGS.vocab_path) train_batches = batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) # dev_x, dev_y, _ = load_data(FLAGS.dev_path, FLAGS.sequence_length) # 构建图,进行训练 with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # 构建cnn 节点 cnn = CNNClassification( sequence_length=FLAGS.sequence_length, num_tags=FLAGS.num_tags, vocab_size=len(vocab_processer.vocabulary_), embedding_size=FLAGS.embedding_dim, filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) # 优化算法 optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram( "{}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar( "{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath( os.path.join(FLAGS.out_dir, "runs_cnn", timestamp)) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge( [loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Write vocabulary # vocab_processer.save(os.path.join(out_dir, "vocab")) # Initialize all variables sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob } # 执行 节点操作 _, step, summaries, loss, accuracy = sess.run([ train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy ], feed_dict) time_str = datetime.datetime.now().isoformat() if step % 20 == 0: print("{}: step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy, correct = sess.run([ global_step, dev_summary_op, cnn.loss, cnn.accuracy, cnn.num_correct ], feed_dict) if writer: writer.add_summary(summaries, step) return loss, accuracy, correct # Training loop. For each batch... best_acc = 0.0 best_step = 0 for batch in train_batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) # 更新全局步数 current_step = tf.train.global_step(sess, global_step) # 计算评估结果 if current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_batches = batch_iter(list(zip(x_dev, y_dev)), FLAGS.batch_size, 1) correct = 0.0 for batch_dev in dev_batches: x_dev_batch, y_dev_batch = zip(*batch_dev) loss_, accuracy_, correct_ = dev_step( x_dev_batch, y_dev_batch, writer=dev_summary_writer) # print(correct_) correct += correct_ # print(dev_manager.length) accuracy_ = correct / len(y_dev) # loss_, accuracy_, correct_ = dev_step(x_dev, y_dev, writer=dev_summary_writer) time_str = datetime.datetime.now().isoformat() print("{}: acc {:g}".format(time_str, accuracy_)) if accuracy_ > best_acc: best_acc = accuracy_ best_step = current_step # 保存模型计算结果 path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path)) print("") print('\nBset dev at {}, accuray {:g}'.format(best_step, best_acc))
def train_cnns(): """ 使用普通数据加载方式,进行训练,适用于小数据集 :return: """ # 加载数据 # Generate batches # train_manager = batch_manager(FLAGS.train_path, FLAGS.sequence_length, FLAGS.batch_size, FLAGS.num_epochs) # dev_manager = batch_manager(FLAGS.dev_path, FLAGS.sequence_length, FLAGS.batch_size, 1) x_train, y_train = pickle.load(open(FLAGS.train_path, 'rb')) x_dev, y_dev = pickle.load(open(FLAGS.dev_path, 'rb')) term2id, id2term = pickle.load(open(FLAGS.vocab_path, 'rb')) train_batches = batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs) # dev_x, dev_y, _ = load_data(FLAGS.dev_path, FLAGS.sequence_length) # 构建图,进行训练 with tf.Graph().as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # 构建cnn 节点 cnn = CNNClassification(sequence_length=FLAGS.sequence_length, num_tags=FLAGS.num_tags, vocab_size=len(term2id), embedding_size=FLAGS.embedding_dim, filter_sizes=list( map(int, FLAGS.filter_sizes.split(","))), num_filters=FLAGS.num_filters, l2_reg_lambda=FLAGS.l2_reg_lambda) # Define Training procedure global_step = tf.Variable(0, name="global_step", trainable=False) # 优化算法 optimizer = tf.train.AdamOptimizer(1e-3) grads_and_vars = optimizer.compute_gradients(cnn.loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step) # Keep track of gradient values and sparsity (optional) grad_summaries = [] for g, v in grads_and_vars: if g is not None: grad_hist_summary = tf.summary.histogram( "{}/grad/hist".format(v.name), g) sparsity_summary = tf.summary.scalar( "{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) grad_summaries.append(grad_hist_summary) grad_summaries.append(sparsity_summary) grad_summaries_merged = tf.summary.merge(grad_summaries) # Output directory for models and summaries timestamp = str(int(time.time())) out_dir = os.path.abspath(os.path.join(FLAGS.out_dir, "runs_cnn")) print("Writing to {}\n".format(out_dir)) # Summaries for loss and accuracy loss_summary = tf.summary.scalar("loss", cnn.loss) acc_summary = tf.summary.scalar("accuracy", cnn.accuracy) # Train Summaries train_summary_op = tf.summary.merge( [loss_summary, acc_summary, grad_summaries_merged]) train_summary_dir = os.path.join(out_dir, "summaries", "train") train_summary_writer = tf.summary.FileWriter( train_summary_dir, sess.graph) # Dev summaries dev_summary_op = tf.summary.merge([loss_summary, acc_summary]) dev_summary_dir = os.path.join(out_dir, "summaries", "dev") dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph) # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it checkpoint_dir = os.path.abspath( os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints) # Write vocabulary # vocab_processer.save(os.path.join(out_dir, "vocab")) # Initialize all variables sess.run(tf.global_variables_initializer()) def train_step(x_batch, y_batch): """ A single training step """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: FLAGS.dropout_keep_prob } # 执行 节点操作 _, step, summaries, loss, accuracy = sess.run([ train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy ], feed_dict) time_str = datetime.datetime.now().isoformat() if step % 20 == 0: print("{}: step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy)) train_summary_writer.add_summary(summaries, step) def dev_step(x_batch, y_batch, writer=None): """ Evaluates model on a dev set """ feed_dict = { cnn.input_x: x_batch, cnn.input_y: y_batch, cnn.dropout_keep_prob: 1.0 } step, summaries, loss, accuracy, correct = sess.run([ global_step, dev_summary_op, cnn.loss, cnn.accuracy, cnn.num_correct ], feed_dict) if writer: writer.add_summary(summaries, step) return loss, accuracy, correct # Training loop. For each batch... best_acc = 0.0 best_step = 0 for batch in train_batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) # 更新全局步数 current_step = tf.train.global_step(sess, global_step) # 计算评估结果 if current_step % FLAGS.evaluate_every == 0: print("\nEvaluation:") dev_batches = batch_iter(list(zip(x_dev, y_dev)), FLAGS.batch_size, 1) correct = 0.0 for batch_dev in dev_batches: x_dev_batch, y_dev_batch = zip(*batch_dev) loss_, accuracy_, correct_ = dev_step( x_dev_batch, y_dev_batch, writer=dev_summary_writer) # print(correct_) correct += correct_ # print(dev_manager.length) accuracy_ = correct / len(y_dev) # loss_, accuracy_, correct_ = dev_step(x_dev, y_dev, writer=dev_summary_writer) time_str = datetime.datetime.now().isoformat() print("{}: acc {:g}".format(time_str, accuracy_)) if accuracy_ > best_acc: best_acc = accuracy_ best_step = current_step # 保存模型计算结果 path = saver.save(sess, checkpoint_prefix, global_step=current_step) print("Saved model checkpoint to {}\n".format(path)) print("") print('\nBset dev at {}, accuray {:g}'.format(best_step, best_acc))