def pred(facility, model, resolution):
    filename, columns, irrelevantColumns, targetColumns, traintime, testtime, columnOrder = configs.getConfig(
        facility, model, resolution)

    df = mlModule.initDataframe(filename, columns, irrelevantColumns)
    df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)
    X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(
        targetColumns)

    lstm_1_1 = mlModule.LSTM('LSTM 1x128 d0.0' + ' mod' + model,
                             layers=[128],
                             dropout=0.0,
                             recurrentDropout=0.0,
                             epochs=5000)
    lstm_1_2 = mlModule.LSTM('LSTM 1x128 d0.1' + ' mod' + model,
                             layers=[128],
                             dropout=0.1,
                             recurrentDropout=0.1,
                             epochs=5000)
    lstm_1_3 = mlModule.LSTM('LSTM 1x128 d0.2' + ' mod' + model,
                             layers=[128],
                             dropout=0.2,
                             recurrentDropout=0.2,
                             epochs=5000)
    lstm_1_4 = mlModule.LSTM('LSTM 1x128 d0.3' + ' mod' + model,
                             layers=[128],
                             dropout=0.3,
                             recurrentDropout=0.3,
                             epochs=5000)
    lstm_1_5 = mlModule.LSTM('LSTM 1x128 d0.4' + ' mod' + model,
                             layers=[128],
                             dropout=0.4,
                             recurrentDropout=0.4,
                             epochs=5000)
    lstm_1_6 = mlModule.LSTM('LSTM 1x128 d0.5' + ' mod' + model,
                             layers=[128],
                             dropout=0.5,
                             recurrentDropout=0.5,
                             epochs=5000)
    linear = mlModule.Linear_Regularized('Linear rCV mod' + model)

    initTrainPredict([
        linear,
        lstm_1_1,
        lstm_1_2,
        lstm_1_3,
        lstm_1_4,
        lstm_1_5,
        lstm_1_6,
    ])
Exemple #2
0
def pred(facility, model, resolution):
    filename, columns, irrelevantColumns, targetColumns, traintime, testtime, columnOrder = configs.getConfig(facility, model, resolution)

    df = mlModule.initDataframe(filename, columns, irrelevantColumns)
    df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)
    X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(targetColumns)

    mlp_mae = mlModule.MLP('MLP 1x128 d0.2 mae mod'+model, layers=[128], dropout=0.2, loss='mean_absolute_error', metrics=['mean_absolute_error'])
    mlp_mse = mlModule.MLP('MLP 1x128 d0.2 mse mod'+model, layers=[128], dropout=0.2, loss='mean_squared_error', metrics=['mean_squared_error'])
    lstm_mae = mlModule.LSTM('LSTM 1x128 d0.2 mae mod'+model, layers=[128], dropout=0.2, recurrentDropout=0.2, enrolWindow=12, loss='mean_absolute_error', metrics=['mean_absolute_error'])
    lstm_mse = mlModule.LSTM('LSTM 1x128 d0.2 mse mod'+model, layers=[128], dropout=0.2, recurrentDropout=0.2, enrolWindow=12, loss='mean_squared_error', metrics=['mean_squared_error'])
    
    modelList = [
        mlp_mae,
        mlp_mse,
        lstm_mae,
        lstm_mse,
    ]

    initTrainPredict(modelList)
Exemple #3
0
def performDropoutPrediction(facility,
                             model,
                             resolution,
                             lookback=12,
                             retrain=False):
    filename, columns, irrelevantColumns, targetColumns, traintime, testtime, columnOrder = configs.getConfig(
        facility, model, resolution)

    df = mlModule.initDataframe(filename, columns, irrelevantColumns)
    df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)
    X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(
        targetColumns)

    lstm = mlModule.LSTM('LSTMs 1x128 d0.2 mod' + model,
                         layers=[128],
                         training=True,
                         dropout=0.2,
                         recurrentDropout=0.2,
                         enrolWindow=lookback)
    gru = mlModule.GRU('GRUs 1x128 d0.2 mod' + model,
                       layers=[128],
                       training=True,
                       dropout=0.2,
                       recurrentDropout=0.2,
                       enrolWindow=lookback)

    modelList = [
        lstm,
        gru,
    ]

    mlModule.initModels(modelList)
    mlModule.trainModels(retrain)

    predictions, means, stds = mlModule.predictWithModelsUsingDropout(
        numberOfPredictions=30)
    plotDropoutPrediction(modelList, predictions, means, stds, targetColumns,
                          df_test, y_test, traintime)
Exemple #4
0
targetColumns = [
    '50TT002',
    '20PDT001',
]

# List of training periods on form ['start', 'end']
traintime = [
    ["2020-01-01 00:00:00", "2020-03-20 00:00:00"],
]

# Testing period, recommended: entire dataset
testtime = ["2020-01-01 00:00:00", "2020-08-01 00:00:00"]

df = mlModule.initDataframe(filename, columns, irrelevantColumns)
df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)
X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(
    targetColumns)

mlp_1 = mlModule.MLP('MLP 1x64 d0.2 mod' + model, layers=[64], dropout=0.2)
mlp_2 = mlModule.MLP('MLP 1x128 d0.2 mod' + model, layers=[128], dropout=0.2)
mlp_3 = mlModule.MLP('MLP 2x64 d0.2 mod' + model, layers=[64, 64], dropout=0.2)
mlp_4 = mlModule.MLP('MLP 2x128 d0.2 mod' + model,
                     layers=[128, 128],
                     dropout=0.2)
lstm_1 = mlModule.LSTM('LSTM 1x64 d0.2 mod' + model,
                       layers=[64],
                       dropout=0.2,
                       recurrentDropout=0.2,
                       enrolWindow=12)
lstm_2 = mlModule.LSTM('LSTM 1x128 d0.2 mod' + model,
                       layers=[128],
                       dropout=0.2,
def featureComparison(
    irrelevantColumnsList,
    filename,
    columns,
    traintime,
    testtime,
    targetColumns,
    enrolWindow,
):
    global colors, models

    columnsLists = []
    deviationsLists = []
    names = []
    trainmetrics = []
    testmetrics = []

    for i, irrelevantColumns in enumerate(irrelevantColumnsList):
        mlModule.reset()

        df = mlModule.initDataframe(filename, columns, irrelevantColumns)
        df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)

        X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(
            targetColumns)

        mlp_1 = mlModule.MLP('MLP 1x64 d0.2 mod' + models[i],
                             layers=[64],
                             dropout=0.2)
        mlp_2 = mlModule.MLP('MLP 1x128 d0.2 mod' + models[i],
                             layers=[128],
                             dropout=0.2)
        mlp_3 = mlModule.MLP('MLP 2x64 d0.2 mod' + models[i],
                             layers=[64, 64],
                             dropout=0.2)
        mlp_4 = mlModule.MLP('MLP 2x128 d0.2 mod' + models[i],
                             layers=[128, 128],
                             dropout=0.2)
        lstm_1 = mlModule.LSTM('LSTM 1x64 d0.2 mod' + models[i],
                               layers=[64],
                               dropout=0.2,
                               recurrentDropout=0.2,
                               enrolWindow=12)
        lstm_2 = mlModule.LSTM('LSTM 1x128 d0.2 mod' + models[i],
                               layers=[128],
                               dropout=0.2,
                               recurrentDropout=0.2,
                               enrolWindow=12)
        lstm_3 = mlModule.LSTM('LSTM 2x64 d0.2 mod' + models[i],
                               layers=[64, 64],
                               dropout=0.2,
                               recurrentDropout=0.2,
                               enrolWindow=12)
        lstm_4 = mlModule.LSTM('LSTM 2x128 d0.2 mod' + models[i],
                               layers=[128, 128],
                               dropout=0.2,
                               recurrentDropout=0.2,
                               enrolWindow=12)
        linear = mlModule.Linear_Regularized('Linear rCV mod' + models[i])

        modelList = [
            mlp_1,
            mlp_2,
            mlp_3,
            mlp_4,
            lstm_1,
            lstm_2,
            lstm_3,
            lstm_4,
            linear,
        ]

        mlModule.initModels(modelList)
        retrain = False
        mlModule.trainModels(retrain)

        modelNames, metrics_train, metrics_test, columnsList, deviationsList = mlModule.predictWithModels(
            plot=True, score=True)

        if i < 1:
            columnsLists = columnsList
            deviationsLists = deviationsList
            all_names = modelNames
            all_train_metrics = metrics_train
            all_test_metrics = metrics_test
        else:
            for j_target in range(len(columnsList)):
                for k_model in range(1, len(columnsList[j_target])):
                    columnsLists[j_target].append(
                        columnsList[j_target][k_model])
                for k_model in range(0, len(deviationsList[j_target])):
                    deviationsLists[j_target].append(
                        deviationsList[j_target][k_model])
        all_names = [*all_names, *modelNames]
        all_train_metrics = [*all_train_metrics, *metrics_train]
        all_test_metrics = [*all_test_metrics, *metrics_test]

        names.append(modelNames)
        trainmetrics.append(metrics_train)
        testmetrics.append(metrics_test)

    indexColumn = mlModule._indexColumn
    columnDescriptions = mlModule._columnDescriptions
    columnUnits = mlModule._columnUnits
    traintime = mlModule._traintime

    for i in range(len(deviationsLists)):
        for j in range(len(deviationsLists[i])):
            deviationsLists[i][j][3] = colors[j]

    for i in range(len(columnsLists)):
        columnsList[i][0][3] = 'red'
        for j in range(1, len(columnsLists[i])):
            columnsLists[i][j][3] = colors[j - 1]

    printModelScores(
        all_names,
        all_train_metrics,
        all_test_metrics,
    )
    plotModelPredictions(
        plt,
        deviationsLists,
        columnsLists,
        indexColumn,
        columnDescriptions,
        columnUnits,
        traintime,
        interpol=False,
    )
    plotModelScores(
        plt,
        all_names,
        all_train_metrics,
        all_test_metrics,
    )
Exemple #6
0
def pred(facility, model, resolution):
    filename, columns, irrelevantColumns, targetColumns, traintime, testtime, columnOrder = configs.getConfig(
        facility, model, resolution)

    df = mlModule.initDataframe(filename, columns, irrelevantColumns)
    df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)
    X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(
        targetColumns)

    mlpr_1_1 = mlModule.MLP('MLP 1x128 1.0' + ' mod' + model,
                            layers=[128],
                            l1_rate=1.0,
                            epochs=5000)
    mlpr_1_2 = mlModule.MLP('MLP 1x128 0.5' + ' mod' + model,
                            layers=[128],
                            l1_rate=0.5,
                            epochs=5000)
    mlpr_1_3 = mlModule.MLP('MLP 1x128 0.1' + ' mod' + model,
                            layers=[128],
                            l1_rate=0.1,
                            epochs=5000)
    mlpr_1_4 = mlModule.MLP('MLP 1x128 0.05' + ' mod' + model,
                            layers=[128],
                            l1_rate=0.05,
                            epochs=5000)
    mlpr_1_5 = mlModule.MLP('MLP 1x128 0.01' + ' mod' + model,
                            layers=[128],
                            l1_rate=0.01,
                            epochs=5000)
    mlpr_1_6 = mlModule.MLP('MLP 1x128 0.005' + ' mod' + model,
                            layers=[128],
                            l1_rate=0.005,
                            epochs=5000)
    mlpr_1_7 = mlModule.MLP('MLP 1x128 0.001' + ' mod' + model,
                            layers=[128],
                            l1_rate=0.001,
                            epochs=5000)
    mlpd_1_8 = mlModule.MLP('MLP 1x128 0.2' + ' mod' + model,
                            layers=[128],
                            dropout=0.2,
                            epochs=5000)

    linear_r = mlModule.Linear_Regularized('Linear rCV' + ' mod' + model)

    initTrainPredict([
        mlpr_1_1,
        mlpr_1_2,
        mlpr_1_3,
        mlpr_1_4,
        mlpr_1_5,
        mlpr_1_6,
        mlpr_1_7,
        mlpd_1_8,
        linear_r,
    ])

    initTrainPredict([
        mlpr_1_6,
        mlpr_1_7,
        mlpd_1_8,
        linear_r,
    ])
Exemple #7
0
def pred(facility, model, resolution):
    filename, columns, irrelevantColumns, targetColumns, traintime, testtime, columnOrder = configs.getConfig(
        facility, model, resolution)

    df = mlModule.initDataframe(filename, columns, irrelevantColumns)
    df_train, df_test = mlModule.getTestTrainSplit(traintime, testtime)
    X_train, y_train, X_test, y_test = mlModule.getFeatureTargetSplit(
        targetColumns)

    mlp_1x_16 = mlModule.MLP('MLP 1x16' + ' mod' + model,
                             layers=[16],
                             dropout=0.2,
                             epochs=1000)
    mlp_1x_32 = mlModule.MLP('MLP 1x32' + ' mod' + model,
                             layers=[32],
                             dropout=0.2,
                             epochs=1000)
    mlp_1x_64 = mlModule.MLP('MLP 1x64' + ' mod' + model,
                             layers=[64],
                             dropout=0.2,
                             epochs=1000)
    mlp_1x_128 = mlModule.MLP('MLP 1x128' + ' mod' + model,
                              layers=[128],
                              dropout=0.2,
                              epochs=1000)

    mlp_2x_16 = mlModule.MLP('MLP 2x16' + ' mod' + model,
                             layers=[16, 16],
                             dropout=0.2,
                             epochs=1000)
    mlp_2x_32 = mlModule.MLP('MLP 2x32' + ' mod' + model,
                             layers=[32, 32],
                             dropout=0.2,
                             epochs=1000)
    mlp_2x_64 = mlModule.MLP('MLP 2x64' + ' mod' + model,
                             layers=[64, 64],
                             dropout=0.2,
                             epochs=1000)
    mlp_2x_128 = mlModule.MLP('MLP 2x128' + ' mod' + model,
                              layers=[128, 128],
                              dropout=0.2,
                              epochs=1000)

    linear_cv = mlModule.Linear_Regularized('Linear rCV' + ' mod' + model)

    ensemble = mlModule.Ensemble('MLP 1x128 + Linear' + ' mod' + model,
                                 [mlp_1x_128, linear_cv])
    ensemble2 = mlModule.Ensemble('MLP 2x64 + Linear' + ' mod' + model,
                                  [mlp_2x_64, linear_cv])

    modelList = [
        linear_cv,
        mlp_1x_16,
        mlp_1x_32,
        mlp_2x_16,
        mlp_2x_32,
    ]

    initTrainPredict(modelList)

    modelList = [
        linear_cv,
        mlp_1x_64,
        mlp_1x_128,
        mlp_2x_64,
        mlp_2x_128,
    ]

    initTrainPredict(modelList)

    modelList = [
        linear_cv,
        ensemble,
        ensemble2,
    ]

    initTrainPredict(modelList)