Exemple #1
0
def show_improved_model_performances(dframe):
    print('\nCalculating improved models performances:')
    train, test = preprocess.get_train_test_split(dframe)

    test_x = preprocess.get_featues(test)
    test_y = preprocess.get_label(test)

    show_models_performances([
        get_model(RandomForestModel()),
        get_model(LogisticRegressionModel()),
        get_model(SVM()),
        get_model_keras()
    ], test_x, test_y)
Exemple #2
0
def show_benchmark_model_performance():
    print('Calculating benchmark model performance:')
    dframe = preprocess.read_processed_data(constants.RAW_DATA_PICKLE)
    train, test = preprocess.get_train_test_split(dframe)

    test_x = preprocess.get_featues(test)
    test_y = preprocess.get_label(test)
    model = SVM()
    model_file = os.path.join(constants.PROJ_ROOT, 'models', 'benchmark',
                              model.name + '.model')
    model.load(model_file)
    show_models_performances([model],
                             test_x,
                             test_y,
                             roc_file=constants.BENCHMARK_ROC_PATH)
 def train(self, train, validation):
     X = get_featues(train)
     y = get_label(train)
     xv = get_featues(validation)
     yv = get_label(validation)
     self.clf.fit(X, y, epochs=500, verbose=0, validation_data=(xv, yv))
 def train(self, dframe):
     X = get_featues(dframe)
     y = get_label(dframe)
     self.clf.fit(X, y)