Exemple #1
0
    if args.skip_detection:
        dataset = torch_utils.FaceDataset(x, preprocess)
    else:
        imgs = pipeline.load_faces(x, gpu=args.gpu)
        dataset = torch_utils.FaceDataset(imgs, preprocess, x_image=True)

    res = torch_utils.evaluate(model, loader(dataset), gpu=args.gpu)
    misc.display_result(x, misc.softmax(res))

else:
    if tw_face.data_exist():
        print('evaluate the model on Taiwanese faces')
        tw_loader = lambda data: loader(
            torch_utils.FaceDatasetWithLabel(*data, preprocess), )

        data = tw_face.read_data('young')
        torch_utils.eval_acc(model,
                             tw_loader(data),
                             data[1],
                             'TW face young',
                             gpu=args.gpu)

        data = tw_face.read_data('old')
        torch_utils.eval_acc(model,
                             tw_loader(data),
                             data[1],
                             'TW face old',
                             gpu=args.gpu)
    else:
        print(
            'please download Taiwanese faces data first, or use --input / --input_folder to specify inputs'
 def test_label(self):
     x, y = tw_face.read_data()
     for yy in y.flat:
         self.assertIn(yy, range(7))
 def test_readable(self):
     x, y = tw_face.read_data()
     for xx in x:
         Image.open(xx).close()
 def test_all_count(self):
     x, y = tw_face.read_data()
     self.assertEqual(len(x), self.young_size + self.old_size)
     self.assertEqual(y.shape, (self.young_size + self.old_size, ))
 def test_young_count(self):
     x, y = tw_face.read_data('young')
     self.assertEqual(len(x), self.young_size)
     self.assertEqual(y.shape, (self.young_size, ))
 def test_old_count(self):
     x, y = tw_face.read_data('old')
     self.assertEqual(len(x), self.old_size)
     self.assertEqual(y.shape, (self.old_size, ))