Exemple #1
0
                        required=True,
                        help="Checkpoint file path.")
    parser.add_argument("--run_platform",
                        type=str,
                        default="Ascend",
                        choices=("Ascend", "GPU", "CPU"),
                        help="run platform, support Ascend ,GPU and CPU.")
    return parser.parse_args()


if __name__ == '__main__':
    args_opt = get_eval_args()
    if args_opt.dataset == "coco":
        json_path = os.path.join(
            config.coco_root,
            config.instances_set.format(config.val_data_type))
    elif args_opt.dataset == "voc":
        json_path = os.path.join(config.voc_root, config.voc_json)
    else:
        raise ValueError('SSD eval only support dataset mode is coco and voc!')

    context.set_context(mode=context.GRAPH_MODE,
                        device_target=args_opt.run_platform,
                        device_id=args_opt.device_id)

    mindrecord_file = create_mindrecord(args_opt.dataset,
                                        "ssd_eval.mindrecord", False)

    print("Start Eval!")
    ssd_eval(mindrecord_file, args_opt.checkpoint_path, json_path)
Exemple #2
0
def main():
    args_opt = get_args()
    rank = 0
    device_num = 1
    if args_opt.run_platform == "CPU":
        context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    else:
        context.set_context(mode=context.GRAPH_MODE,
                            device_target=args_opt.run_platform,
                            device_id=args_opt.device_id)
        if args_opt.distribute:
            device_num = args_opt.device_num
            context.reset_auto_parallel_context()
            context.set_auto_parallel_context(
                parallel_mode=ParallelMode.DATA_PARALLEL,
                gradients_mean=True,
                device_num=device_num)
            init()
            context.set_auto_parallel_context(
                all_reduce_fusion_config=[29, 58, 89])
            rank = get_rank()

    mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord",
                                        True)

    if args_opt.only_create_dataset:
        return

    loss_scale = float(args_opt.loss_scale)
    if args_opt.run_platform == "CPU":
        loss_scale = 1.0

    # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
    use_multiprocessing = (args_opt.run_platform != "CPU")
    dataset = create_ssd_dataset(mindrecord_file,
                                 repeat_num=1,
                                 batch_size=args_opt.batch_size,
                                 device_num=device_num,
                                 rank=rank,
                                 use_multiprocessing=use_multiprocessing)

    dataset_size = dataset.get_dataset_size()
    print("Create dataset done!")

    backbone = ssd_mobilenet_v2()
    if config.model == "ssd300":
        ssd = SSD300(backbone=backbone, config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        ssd = ssd_mobilenet_v1_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    if args_opt.run_platform == "GPU":
        ssd.to_float(dtype.float16)
    net = SSDWithLossCell(ssd, config)

    init_net_param(net)

    if config.feature_extractor_base_param != "":
        param_dict = load_checkpoint(config.feature_extractor_base_param)
        for x in list(param_dict.keys()):
            param_dict["network.feature_extractor.mobilenet_v1." +
                       x] = param_dict[x]
            del param_dict[x]
        load_param_into_net(ssd.feature_extractor.mobilenet_v1.network,
                            param_dict)

    # checkpoint
    ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size *
                                   args_opt.save_checkpoint_epochs)
    save_ckpt_path = './ckpt_' + str(rank) + '/'
    ckpoint_cb = ModelCheckpoint(prefix="ssd",
                                 directory=save_ckpt_path,
                                 config=ckpt_config)

    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        if args_opt.filter_weight:
            filter_checkpoint_parameter(param_dict)
        load_param_into_net(net, param_dict)

    if args_opt.freeze_layer == "backbone":
        for param in backbone.feature_1.trainable_params():
            param.requires_grad = False

    lr = Tensor(
        get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
               lr_init=config.lr_init,
               lr_end=config.lr_end_rate * args_opt.lr,
               lr_max=args_opt.lr,
               warmup_epochs=config.warmup_epochs,
               total_epochs=args_opt.epoch_size,
               steps_per_epoch=dataset_size))

    if "use_global_norm" in config and config.use_global_norm:
        opt = nn.Momentum(
            filter(lambda x: x.requires_grad, net.get_parameters()), lr,
            config.momentum, config.weight_decay, 1.0)
        net = TrainingWrapper(net, opt, loss_scale, True)
    else:
        opt = nn.Momentum(
            filter(lambda x: x.requires_grad, net.get_parameters()), lr,
            config.momentum, config.weight_decay, loss_scale)
        net = TrainingWrapper(net, opt, loss_scale)

    callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
    model = Model(net)
    dataset_sink_mode = False
    if args_opt.mode == "sink" and args_opt.run_platform != "CPU":
        print("In sink mode, one epoch return a loss.")
        dataset_sink_mode = True
    print(
        "Start train SSD, the first epoch will be slower because of the graph compilation."
    )
    model.train(args_opt.epoch_size,
                dataset,
                callbacks=callback,
                dataset_sink_mode=dataset_sink_mode)
Exemple #3
0
def main():
    parser = argparse.ArgumentParser(description="retinanet training")
    parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
                        help="If set it true, only create Mindrecord, default is False.")
    parser.add_argument("--distribute", type=ast.literal_eval, default=False,
                        help="Run distribute, default is False.")
    parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
    parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
    parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
    parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
    parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
    parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
    parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
    parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
    parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
    parser.add_argument("--save_checkpoint_epochs", type=int, default=1, help="Save checkpoint epochs, default is 1.")
    parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
    parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
                        help="Filter weight parameters, default is False.")
    parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
                        help="run platform, only support Ascend.")
    args_opt = parser.parse_args()

    if args_opt.run_platform == "Ascend":
        context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
        if args_opt.distribute:
            if os.getenv("DEVICE_ID", "not_set").isdigit():
                context.set_context(device_id=int(os.getenv("DEVICE_ID")))
            init()
            device_num = args_opt.device_num
            rank = get_rank()
            context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
                                              device_num=device_num)
        else:
            rank = 0
            device_num = 1
            context.set_context(device_id=args_opt.device_id)

    else:
        raise ValueError("Unsupported platform.")

    mindrecord_file = create_mindrecord(args_opt.dataset, "retinanet.mindrecord", True)

    if not args_opt.only_create_dataset:
        loss_scale = float(args_opt.loss_scale)

        # When create MindDataset, using the fitst mindrecord file, such as retinanet.mindrecord0.
        dataset = create_retinanet_dataset(mindrecord_file, repeat_num=1,
                                           batch_size=args_opt.batch_size, device_num=device_num, rank=rank)

        dataset_size = dataset.get_dataset_size()
        print("Create dataset done!")


        backbone = resnet50(config.num_classes)
        retinanet = retinanet50(backbone, config)
        net = retinanetWithLossCell(retinanet, config)
        net.to_float(mindspore.float16)
        init_net_param(net)

        if args_opt.pre_trained:
            if args_opt.pre_trained_epoch_size <= 0:
                raise KeyError("pre_trained_epoch_size must be greater than 0.")
            param_dict = load_checkpoint(args_opt.pre_trained)
            if args_opt.filter_weight:
                filter_checkpoint_parameter(param_dict)
            load_param_into_net(net, param_dict)

        lr = Tensor(get_lr(global_step=config.global_step,
                           lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
                           warmup_epochs1=config.warmup_epochs1, warmup_epochs2=config.warmup_epochs2,
                           warmup_epochs3=config.warmup_epochs3, warmup_epochs4=config.warmup_epochs4,
                           warmup_epochs5=config.warmup_epochs5, total_epochs=args_opt.epoch_size,
                           steps_per_epoch=dataset_size))
        opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
                          config.momentum, config.weight_decay, loss_scale)
        net = TrainingWrapper(net, opt, loss_scale)
        model = Model(net)
        print("Start train retinanet, the first epoch will be slower because of the graph compilation.")
        cb = [TimeMonitor(), LossMonitor()]
        cb += [Monitor(lr_init=lr.asnumpy())]
        config_ck = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs,
                                     keep_checkpoint_max=config.keep_checkpoint_max)
        ckpt_cb = ModelCheckpoint(prefix="retinanet", directory=config.save_checkpoint_path, config=config_ck)
        if args_opt.distribute:
            if rank == 0:
                cb += [ckpt_cb]
            model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
        else:
            cb += [ckpt_cb]
            model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
Exemple #4
0
def main():
    args_opt = get_args()
    rank = 0
    device_num = 1
    if args_opt.run_platform == "CPU":
        context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    else:
        context.set_context(mode=context.GRAPH_MODE,
                            device_target=args_opt.run_platform,
                            device_id=args_opt.device_id)
        if args_opt.distribute:
            device_num = args_opt.device_num
            context.reset_auto_parallel_context()
            context.set_auto_parallel_context(
                parallel_mode=ParallelMode.DATA_PARALLEL,
                gradients_mean=True,
                device_num=device_num)
            init()
            if config.model == "ssd_resnet50_fpn":
                context.set_auto_parallel_context(
                    all_reduce_fusion_config=[90, 183, 279])
            if config.model == "ssd_vgg16":
                context.set_auto_parallel_context(
                    all_reduce_fusion_config=[20, 41, 62])
            else:
                context.set_auto_parallel_context(
                    all_reduce_fusion_config=[29, 58, 89])
            rank = get_rank()

    mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord",
                                        True)

    if args_opt.only_create_dataset:
        return

    loss_scale = float(args_opt.loss_scale)
    if args_opt.run_platform == "CPU":
        loss_scale = 1.0

    # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
    use_multiprocessing = (args_opt.run_platform != "CPU")
    dataset = create_ssd_dataset(mindrecord_file,
                                 repeat_num=1,
                                 batch_size=args_opt.batch_size,
                                 device_num=device_num,
                                 rank=rank,
                                 use_multiprocessing=use_multiprocessing)

    dataset_size = dataset.get_dataset_size()
    print(f"Create dataset done! dataset size is {dataset_size}")
    ssd = ssd_model_build(args_opt)
    if ("use_float16" in config
            and config.use_float16) or args_opt.run_platform == "GPU":
        ssd.to_float(dtype.float16)
    net = SSDWithLossCell(ssd, config)

    # checkpoint
    ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size *
                                   args_opt.save_checkpoint_epochs)
    save_ckpt_path = './ckpt_' + str(rank) + '/'
    ckpoint_cb = ModelCheckpoint(prefix="ssd",
                                 directory=save_ckpt_path,
                                 config=ckpt_config)

    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        if args_opt.filter_weight:
            filter_checkpoint_parameter_by_list(param_dict,
                                                config.checkpoint_filter_list)
        load_param_into_net(net, param_dict, True)

    lr = Tensor(
        get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
               lr_init=config.lr_init,
               lr_end=config.lr_end_rate * args_opt.lr,
               lr_max=args_opt.lr,
               warmup_epochs=config.warmup_epochs,
               total_epochs=args_opt.epoch_size,
               steps_per_epoch=dataset_size))

    if "use_global_norm" in config and config.use_global_norm:
        opt = nn.Momentum(
            filter(lambda x: x.requires_grad, net.get_parameters()), lr,
            config.momentum, config.weight_decay, 1.0)
        net = TrainingWrapper(net, opt, loss_scale, True)
    else:
        opt = nn.Momentum(
            filter(lambda x: x.requires_grad, net.get_parameters()), lr,
            config.momentum, config.weight_decay, loss_scale)
        net = TrainingWrapper(net, opt, loss_scale)

    callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
    model = Model(net)
    dataset_sink_mode = False
    if args_opt.mode == "sink" and args_opt.run_platform != "CPU":
        print("In sink mode, one epoch return a loss.")
        dataset_sink_mode = True
    print(
        "Start train SSD, the first epoch will be slower because of the graph compilation."
    )
    model.train(args_opt.epoch_size,
                dataset,
                callbacks=callback,
                dataset_sink_mode=dataset_sink_mode)
Exemple #5
0
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""create mindrecord for training retinanet."""

import argparse
from src.dataset import create_mindrecord

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="retinanet dataset create")
    parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
    args_opt = parser.parse_args()
    mindrecord_file = create_mindrecord(args_opt.dataset, "retinanet.mindrecord", True)