Exemple #1
0
def even_numbers_test():
    B = [Atom([Term(False, '0')], 'zero')] + \
        [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
         for i in range(0, 20)]

    P = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)]
    N = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)]
    print(P)
    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [Atom([term_x_0], 'zero'), Atom([term_x_0, term_x_1], 'succ')]
    p_a = [Atom([term_x_0, term_x_1], 'pred')]
    target = Atom([term_x_0], 'target')
    constants = [str(i) for i in range(0, 21)]

    # Define rules for intensional predicates
    p_a_rule = (Rule_Template(1, False), None)
    target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    rules = {p_a[0]: p_a_rule, target: target_rule}

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    #program_template = Program_Template(p_a, rules, 300)

    dilp = DILP(langage_frame, B, P, N, program_template)

    dilp.train()
Exemple #2
0
def less_than():
    B = [Atom([Term(False, '0')], 'zero')] + \
        [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
         for i in range(0, 9)]

    P = []
    N = []
    for i in range(0, 10):
        for j in range(0, 10):
            if j >= i:
                N.append(
                    Atom([Term(False, str(j)), Term(False, str(i))], 'target'))
            else:
                P.append(
                    Atom([Term(False, str(j)), Term(False, str(i))], 'target'))

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [Atom([term_x_0], 'zero'), Atom([term_x_0, term_x_1], 'succ')]
    p_a = []

    target = Atom([term_x_0, term_x_1], 'target')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 10)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train()
Exemple #3
0
def action_up_2():
    B_0, P_up, P_sw, P_stay, N_up, N_sw, N_stay = get_B_N_P()
    B = [Atom([Term(False, str(x[1]))], x[0]) for x in B_0]

    N = [Atom([Term(False, str(id))], 'up') for id in P_up]
    P = [Atom([Term(False, str(id))], 'up') for id in N_up]
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    p_a = []

    target = Atom([term_x_0], 'up')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), None)
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 400)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=250)
Exemple #4
0
def action_switch_2():
    num = 30
    inx = random.sample(range(0, 100), num)
    neg_inx = list(set(range(100)) - set(inx))
    B = [Atom([Term(False, str(id))], 'busy') for id in inx
         ] + [Atom([Term(False, str(id))], 'NObusy') for id in neg_inx] + [
             Atom([Term(False, str(id))], 'front')
             for id in neg_inx if id % 2 == 0
         ] + [
             Atom([Term(False, str(id))], 'back')
             for id in neg_inx if id % 2 != 0
         ]
    P = [Atom([Term(False, str(id))], 'switch') for id in neg_inx]
    N = [Atom([Term(False, str(id))], 'switch') for id in inx]
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    p_a = []
    target = Atom([term_x_0], 'switch')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), None)
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 100)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=252)
Exemple #5
0
def action_sw(bg_all):
    #num = 70
    #inx=random.sample(range(0,100),num)
    #neg_inx = list(set(range(100))-set(inx))
    B_0, P_up, P_sw, P_stay, N_up, N_sw, N_stay = get_B_N_P(bg_all)
    B = [Atom([Term(False, str(x[1]))], x[0]) for x in B_0]
    P = [Atom([Term(False, str(id))], 'sw') for id in P_sw]
    N = [Atom([Term(False, str(id))], 'sw') for id in N_sw]
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    p_a = []
    target = Atom([term_x_0], 'sw')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, False), None)
    rules = {target: target_rule}
    constants = [str(i) for i in range(0, 400)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    loss, cl_set = dilp.train(steps=51)
    return loss, cl_set
Exemple #6
0
def is_cyclic():
    '''
    Learn the target predicate no_negative_cycle(X). The predicate checks if
    a given node in a graph is part of a negative cycle (cycle with at least one
    negative edge).
    '''
    constants = ['a', 'b', 'c', 'd', 'e', 'f']
    ### (B, P, N) Number 1
    B_atom = [
        Atom([Term(False, 'a'), Term(False, 'b')], 'edge'),
        Atom([Term(False, 'b'), Term(False, 'c')], 'edge'),
        Atom([Term(False, 'c'), Term(False, 'a')], 'edge'),
        Atom([Term(False, 'b'), Term(False, 'd')], 'edge'),
        Atom([Term(False, 'd'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'd'), Term(False, 'f')], 'edge'),
        Atom([Term(False, 'f'), Term(False, 'e')], 'edge'),
        Atom([Term(False, 'e'), Term(False, 'f')], 'edge')
    ]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'a')], 'target'),
        Atom([Term(False, 'b')], 'target'),
        Atom([Term(False, 'c')], 'target'),
        Atom([Term(False, 'e')], 'target'),
        Atom([Term(False, 'f')], 'target')
    ]
    P = [Literal(atom, False) for atom in P_atom]

    N_atom = [Atom([Term(False, 'd')], 'target')]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')
    term_x_2 = Term(True, 'X_2')

    p_e = [Literal(Atom([term_x_0, term_x_1], 'edge'), False)]
    p_a = [Literal(Atom([term_x_0, term_x_2], 'pred'), False)]
    target = Literal(Atom([term_x_0], 'target'), False)

    # Define rules for intensional predicates
    p_a_rule = [(Rule_Template_Negation(0, False, False),
                 Rule_Template_Negation(1, True, False))]
    target_rule = (Rule_Template_Negation(0, True, False), None)
    rules = {p_a[0]: p_a_rule[0], target: target_rule}

    language_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    # program_template = Program_Template(p_a, rules, 300)

    dilp = DILP(language_frame, B, P, N, program_template)
    return dilp.train(steps=300)
Exemple #7
0
def action_switch():
    #num = 70
    #inx=random.sample(range(0,100),num)
    #neg_inx = list(set(range(100))-set(inx))
    B_0, P_up, P_sw, P_stay, N_up, N_sw, N_stay = get_B_N_P()
    B = [Atom([Term(False, str(x[1]))], x[0]) for x in B_0]
    # B = [Atom([Term(False, str(id))], 'busy')
    #      for id in inx]+ [Atom([Term(False, str(id))], 'NObusy')
    #      for id in neg_inx]
    # print("B..........")
    # print(B)
    P = [Atom([Term(False, str(id))], 'sw') for id in P_sw]
    N = []  #[Atom([Term(False, str(id))], 'sw')
    #for id in N_sw]
    # print("P..........")
    # print(P)
    # print("N..........")
    # print(N)
    term_x_0 = Term(True, 'X')
    term_x_1 = Term(True, 'X1')
    p_e = [
        Atom([term_x_0], 'busy'),
        Atom([term_x_0], 'NObusy'),
        Atom([term_x_0], 'side'),
        Atom([term_x_0], 'front'),
        Atom([term_x_0], 'back')
    ]
    #p_a = []
    p_a = [Atom([term_x_0], 'pred')]
    target = Atom([term_x_0], 'sw')
    # target_rule = (Rule_Template(0, False), Rule_Template(1, True))
    target_rule = (Rule_Template(0, True), Rule_Template(0, False))
    p_a_rule = (Rule_Template(0, False), None)
    rules = {p_a[0]: p_a_rule, target: target_rule}
    constants = [str(i) for i in range(0, 400)]

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=252)
Exemple #8
0
def even_numbers_negation_test():
    B_atom = [Atom([Term(False, '0')], 'zero')] + \
        [Atom([Term(False, str(i)), Term(False, str(i + 1))], 'succ')
         for i in range(0, 20)]
    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [Atom([Term(False, str(i))], 'target') for i in range(0, 21, 2)]
    P = [Literal(atom, False) for atom in P_atom]
    N_atom = [Atom([Term(False, str(i))], 'target') for i in range(1, 21, 2)]
    N = [Literal(atom, False) for atom in N_atom]

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [
        Literal(Atom([term_x_0], 'zero'), False),
        Literal(Atom([term_x_0, term_x_1], 'succ'), False)
    ]
    p_a = [Literal(Atom([term_x_0, term_x_1], 'pred'), False)]
    target = Literal(Atom([term_x_0], 'target'), False)
    constants = [str(i) for i in range(0, 21)]

    # Define rules for intensional predicates
    p_a_rule = (Rule_Template_Negation(1, False, False), None)
    target_rule = (Rule_Template_Negation(0, False, True),
                   Rule_Template_Negation(1, True, False))
    rules = {p_a[0]: p_a_rule, target: target_rule}

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    #program_template = Program_Template(p_a, rules, 300)

    dilp = DILP(langage_frame, B, P, N, program_template)

    loss = dilp.train(steps=300)
    dilp.show_definition()
    return loss
Exemple #9
0
    def generate_stratified_dilps(self):
        '''
        Construct n DILP objects. All objects have clauses seperated into
        strata to ensure stratification.
        :return:
        '''
        rules = self.program_template.rules
        n_auxiliary_predicates = len(
            rules) - 1  # Subtract 1 for target predicate
        # If only target predicate then no risk for stratification
        if n_auxiliary_predicates <= 0:
            return [
                DILP(self.language_frame, self.background, self.positive,
                     self.negative, self.program_template)
            ]
        target = self.language_frame.target
        rules = rules.copy()
        rules.pop(target)
        keys = list(rules.keys())
        if n_auxiliary_predicates == 1:
            strata1 = {keys[0]: 1, target: 2}
            dilp1 = self.create_DILP(strata1)
            # Removed all predicates in same strata. No need
            return [dilp1]

        if n_auxiliary_predicates == 2:
            strata1 = {keys[0]: 2, keys[1]: 1, target: 2}
            strata2 = {keys[0]: 1, keys[1]: 2, target: 2}
            strata3 = {keys[0]: 1, keys[1]: 1, target: 2}
            strata4 = {keys[0]: 1, keys[1]: 2, target: 3}
            strata5 = {keys[0]: 2, keys[1]: 1, target: 3}

            dilp1 = self.create_DILP(strata1)
            dilp2 = self.create_DILP(strata2)
            dilp3 = self.create_DILP(strata3)
            dilp4 = self.create_DILP(strata4)
            dilp5 = self.create_DILP(strata5)
            return [dilp1, dilp2, dilp3, dilp4, dilp5]
Exemple #10
0
B, pred_f, constants_f = process_file('%s/facts.dilp' % sys.argv[1])
P, target_p, constants_p = process_file('%s/positive.dilp' % sys.argv[1])
N, target_n, constants_n = process_file('%s/negative.dilp' % sys.argv[1])

if not (target_p == target_n):
    raise Exception('Positive and Negative files have different targets')
elif not len(target_p) == 1:
    raise Exception('Can learn only one predicate at a time')
elif not constants_n.issubset(constants_f) or not constants_p.issubset(
        constants_f):
    raise Exception(
        'Constants not in fact file exists in positive/negative file')

term_x_0 = Term(True, 'X_0')
term_x_1 = Term(True, 'X_1')

p_e = list(pred_f)
p_a = [Atom([term_x_0, term_x_1], 'pred')]
target = list(target_p)[0]
constants = constants_f

p_a_rule = (Rule_Template(1, False), None)
target_rule = (Rule_Template(0, False), Rule_Template(1, True))
rules = {p_a[0]: p_a_rule, target: target_rule}

langage_frame = Language_Frame(target, p_e, constants)
program_template = Program_Template(p_a, rules, 10)
dilp = DILP(langage_frame, B, P, N, program_template)
dilp.train()
Exemple #11
0
 def create_DILP(self, strata):
     clause_parameters = self.create_clause_parameters(strata)
     return DILP(self.language_frame, self.background, self.positive,
                 self.negative, self.program_template, clause_parameters)
Exemple #12
0
def no_ancestor():
    '''
    Learn the target predicate of ancestor(X)
    which is true if X has no ancestor
    '''
    constants = [
        'Paul', 'Randy', 'Rachel', 'Bob', 'Alice', 'Stan', 'Kyle', 'Peter',
        'Tony', 'Monica', 'Jessica', 'Duncan'
    ]
    B_atom = [
        Atom([Term(False, 'Bob'), Term(False, 'Paul')], 'parent'),
        Atom([Term(False, 'Bob'), Term(False, 'Alice')], 'parent'),
        Atom([Term(False, 'Randy'), Term(False, 'Tony')], 'parent'),
        Atom([Term(False, 'Randy'), Term(False, 'Stan')], 'parent'),
        Atom([Term(False, 'Peter'), Term(False, 'Kyle')], 'parent'),
        Atom([Term(False, 'Alice'), Term(False, 'Kyle')], 'parent'),
        Atom([Term(False, 'Jessica'),
              Term(False, 'Bob')], 'parent'),
        Atom([Term(False, 'Jessica'),
              Term(False, 'Randy')], 'parent'),
        Atom([Term(False, 'Matthew'),
              Term(False, 'Jessica')], 'parent')
    ]

    B = [Literal(atom, False) for atom in B_atom]

    P_atom = [
        Atom([Term(False, 'Peter')], 'target'),
        Atom([Term(False, 'Monica')], 'target'),
        Atom([Term(False, 'Rachel')], 'target'),
        Atom([Term(False, 'Jessica')], 'target'),
        Atom([Term(False, 'Duncan')], 'target'),
        Atom([Term(False, 'Matthew')], 'target')
    ]
    positive_literal_P = [Literal(atom, False) for atom in P_atom]

    N_atom = [
        Atom([Term(False, 'Randy')], 'target'),
        Atom([Term(False, 'Bob')], 'target'),
        Atom([Term(False, 'Alice')], 'target'),
        Atom([Term(False, 'Kyle')], 'target'),
        Atom([Term(False, 'Tony')], 'target'),
        Atom([Term(False, 'Stan')], 'target'),
        Atom([Term(False, 'Paul')], 'target')
    ]
    positive_literal_N = [Literal(atom, False) for atom in N_atom]

    negative_literal_P = [Literal(atom, True) for atom in N_atom]
    negative_literal_N = [Literal(atom, True) for atom in P_atom]

    P = positive_literal_P + negative_literal_P
    N = positive_literal_N + negative_literal_N

    term_x_0 = Term(True, 'X_0')
    term_x_1 = Term(True, 'X_1')

    p_e = [Atom([term_x_0, term_x_1], 'parent')]
    p_a = []
    target = Atom([term_x_0], 'target')

    # Define rules for intensional predicates
    p_a_rule = (None, None)
    target_rule = (Rule_Template_Negation(1, False, True), None)
    rules = {target: target_rule}

    langage_frame = Language_Frame(target, p_e, constants)
    program_template = Program_Template(p_a, rules, 10)
    #program_template = Program_Template(p_a, rules, 300)

    dilp = DILP(langage_frame, B, P, N, program_template)
    dilp.train(steps=200)