def run(train_df, test_df): encoder = None encoder = Encoder(train_df) lr = modelDict["GBM"](need_scale=False) encoder.transform(train_df) n_train_df = pd.get_dummies(train_df) lr.train(n_train_df) encoder.transform(test_df) n_test_df = pd.get_dummies(test_df) y = lr.test(n_test_df) save(test_df, y, encoder)
def run_ensemble(train_df): encoder = None encoder = Encoder(train_df) encoder.transform(train_df) estimators = [] scores = [] labels = [] nums = list(range(1, 5, 1)) + list(range(5, 60, 5)) + list( range(60, 100, 10)) + list(range(100, 500, 50)) for n in nums: lr = modelDict["GBM"](n_estimators=n) n_train_df = pd.get_dummies(train_df) train_score, val_score = lr.train(n_train_df) scores += [train_score, val_score] estimators += [n, n] labels += ['train', 'val'] return scores, labels, estimators