Exemple #1
0
 def test_aggregation_avg(self):
     columnName = TupleValueExpression(col_name=0)
     aggr_expr = AggregationExpression(ExpressionType.AGGREGATION_AVG, None,
                                       columnName)
     tuples = Batch(pd.DataFrame({
         0: [1, 2, 3],
         1: [2, 3, 4],
         2: [3, 4, 5]
     }))
     self.assertEqual(2, aggr_expr.evaluate(tuples, None))
Exemple #2
0
 def test_aggregation_max(self):
     columnName = TupleValueExpression(col_name=0)
     aggr_expr = AggregationExpression(
         ExpressionType.AGGREGATION_MAX,
         None,
         columnName
     )
     tuples = Batch(pd.DataFrame(
         {0: [1, 2, 3], 1: [2, 3, 4], 2: [3, 4, 5]}))
     batch = aggr_expr.evaluate(tuples, None)
     self.assertEqual(3, batch.frames.iloc[0][0])
Exemple #3
0
    def test_if_expr_tree_is_equal(self):
        const_exp1 = ConstantValueExpression(0)
        const_exp2 = ConstantValueExpression(0)
        columnName1 = TupleValueExpression(col_name='DATA')
        columnName2 = TupleValueExpression(col_name='DATA')

        aggr_expr1 = AggregationExpression(ExpressionType.AGGREGATION_AVG,
                                           None, columnName1)
        aggr_expr2 = AggregationExpression(ExpressionType.AGGREGATION_AVG,
                                           None, columnName2)
        cmpr_exp1 = ComparisonExpression(ExpressionType.COMPARE_NEQ,
                                         aggr_expr1, const_exp1)
        cmpr_exp2 = ComparisonExpression(ExpressionType.COMPARE_NEQ,
                                         aggr_expr2, const_exp2)

        self.assertEqual(cmpr_exp1, cmpr_exp2)
Exemple #4
0
    def test_aggregation_min(self):
        columnName = TupleValueExpression(0)
        aggr_expr = AggregationExpression(
            ExpressionType.AGGREGATION_MIN,
            None,
            columnName
        )

        frame_1 = Frame(1, np.ones((1, 1)), None)
        frame_2 = Frame(2, 2 * np.ones((1, 1)), None)
        frame_3 = Frame(3, 3 * np.ones((1, 1)), None)
        outcome_1 = Prediction(frame_1, ["car", "bus"], [0.5, 0.6])
        outcome_2 = Prediction(frame_2, ["bus"], [0.5, 0.6])
        outcome_3 = Prediction(frame_3, ["car", "train"], [0.5, 0.6])
        input_batch = FrameBatch(frames=[
            frame_1,
            frame_2,
            frame_3,
        ], info=None)

        expected_value = 1
        output_value  = aggr_expr.evaluate(input_batch)
        self.assertEqual(expected_value, output_value)
Exemple #5
0
    def test_should_return_false_for_unequal_expressions(self):
        const_exp1 = ConstantValueExpression(0)
        const_exp2 = ConstantValueExpression(1)
        func_expr = FunctionExpression(lambda x: x + 1)
        cmpr_exp = ComparisonExpression(ExpressionType.COMPARE_NEQ, const_exp1,
                                        const_exp2)
        tuple_expr = TupleValueExpression(col_name='id')
        aggr_expr = AggregationExpression(ExpressionType.AGGREGATION_MAX, None,
                                          tuple_expr)
        logical_expr = LogicalExpression(ExpressionType.LOGICAL_OR, cmpr_exp,
                                         cmpr_exp)

        self.assertNotEqual(const_exp1, const_exp2)
        self.assertNotEqual(cmpr_exp, const_exp1)
        self.assertNotEqual(func_expr, cmpr_exp)
        self.assertNotEqual(tuple_expr, aggr_expr)
        self.assertNotEqual(aggr_expr, tuple_expr)
        self.assertNotEqual(tuple_expr, cmpr_exp)
        self.assertNotEqual(logical_expr, cmpr_exp)
Exemple #6
0
 def test_aggregation_max(self):
     columnName = TupleValueExpression(col_idx=0)
     aggr_expr = AggregationExpression(ExpressionType.AGGREGATION_MAX, None,
                                       columnName)
     tuples = [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
     self.assertEqual(3, aggr_expr.evaluate(tuples, None))