create_range_compress_transforms, chain_transformations, \ atleast_3d, squeeze from src.features.transforms import create_fcs folder = os.path.basename(os.path.dirname(__file__)) subfolder = os.path.splitext(os.path.basename(__file__))[0] name = '/' + folder + '/' + subfolder + '/' from src.configs.schedules.round_16.stock import Schedule from src.configs.resnet.dim256x1 import g_structure from src.configs.patchgan.dim256x2_70_nobn_nosig import d_structure fc_transform, fc_transform_inv = create_fcs(k_values={ 'dm': 2, 'pressure': 4 }, scale=1.75, shift=-1) transform = chain_transformations([fc_transform, atleast_3d]) inv_transform = chain_transformations([squeeze, fc_transform_inv]) schedule = Schedule(name) schedule['sample_interval'] = 100 schedule['batch_size'] = 4 schedule['decay_iter'] = 10 schedule['g_optim_opts']['lr'] = 0.0002 schedule['d_optim_opts']['lr'] = 0.0002 schedule['save_summary']['iters'] = [1] + np.arange(0, 10000, 50).tolist()
adam_opts = { 'lr': 0.001, 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0, 'amsgrad': False } loss_params = {'n_critic': 5, 'grad_lambda': 10, 'l1_lambda': (1e4) / 0.05} paper_opts = adam_opts paper_opts['betas'] = (0.5, 0.999) paper_opts['lr'] = 0.0002 fc_transform, fc_transform_inv = create_fcs(k=4, scale=1.75, shift=-1) transform = chain_transformations([fc_transform, atleast_3d]) inv_transform = chain_transformations([squeeze, fc_transform_inv]) def Schedule(name, transform=transform, inv_transform=inv_transform, loss_params=loss_params, paper_opts=paper_opts, epoch_end=100, n_test=64): schedule = { 'type': 'translator',