def test_local_to_lab(self):
        """ Tests conversion from local acceleration reference frame to laboratory reference frame
        by rotation using integrated angular velocity. Tests both integrator and rotator.
        """

        # generated Trajectory Generator object
        circular_tra = CircularTrajectoryGenerator()
        # get trajectory times
        times = circular_tra.times
        # get local accelerations
        accelerations = circular_tra.get_analytical_local_accelerations()
        # get angular velocities
        angular_velocities = circular_tra.get_angular_velocities()
        heading = None
        # convert to laboratory frame of reference
        accelerations, angular_positions = rotate_accelerations(
            times,
            accelerations,
            angular_velocities,
            heading,
            initial_angular_position=[0, 0, np.pi / 2])
        initial_speed = np.array([[0], [circular_tra.initial_tangential_speed],
                                  [0]])
        velocities = cumulative_integrate(times, accelerations, initial_speed)
        initial_position = np.array([[1], [0], [0]])
        positions = cumulative_integrate(times, velocities, initial_position)
        # if the integrated trajectory and the analytical one are equal thant both the integrator and the rotator works
        np.testing.assert_array_almost_equal(positions,
                                             circular_tra.trajectory,
                                             decimal=3)
    accelerations[2] -= accelerations[2, stationary_times[0][0]:stationary_times[0][-1]].mean()

    # convert to laboratory frame of reference
    motion_time = get_first_motion_time(stationary_times, gnss_positions)
    initial_angular_position = get_initial_angular_position(gnss_positions, motion_time)

    # convert to laboratory frame of reference
    accelerations, angular_positions = rotate_accelerations(times, accelerations, angular_velocities, heading,
                                                            initial_angular_position)

    # rotate to align y to north, x to east
    accelerations = align_to_world(gnss_positions, accelerations, motion_time)

    initial_speed = np.array([[gps_speed[0]], [0], [0]])
    # integrate acceleration with gss velocities correction
    import time
    start_time = time.time()
    correct_velocities_simps = cumulative_integrate(times, accelerations, initial_speed, simps_integrate_delta)
    print("time integrating velocities simps " + str(time.time()-start_time))
    start_time = time.time()
    correct_velocities_trapz = cumulative_integrate(times, accelerations, initial_speed, trapz_integrate_delta)
    print("time integrating velocities trapz " + str(time.time()-start_time))

    correct_position_simps = cumulative_integrate(times, correct_velocities_simps)
    correct_position_trapz = cumulative_integrate(times,correct_velocities_trapz)
    plt.plot(correct_position_simps[0],label='PaIS')
    plt.plot(correct_position_trapz[0],label='Trapezoid')
    plt.ylabel('meters')
    plt.xlabel('seconds')
    plt.legend()
    plt.show()
    # correct z-axis alignment
    accelerations, angular_velocities = correct_z_orientation(accelerations, angular_velocities, stationary_times)
    # remove g
    accelerations[2] -= accelerations[2, stationary_times[0][0]:stationary_times[0][-1]].mean()

    accelerations_module = np.linalg.norm(accelerations, axis=0)
    accelerations_module = np.reshape(accelerations_module, (1, len(accelerations_module)))

    real_acc_module = np.linalg.norm(real_acc, axis=0)

    real_velocities_module = np.reshape(real_velocities_module, (1, len(real_velocities_module)))

    # integrate acceleration with gss velocities correction
    correct_velocities_module = cumulative_integrate(times, accelerations_module, real_velocities_module[0, 0],
                                                     adjust_data=real_velocities_module,
                                                     adjust_frequency=1)

    correct_distance = cumulative_integrate(times, correct_velocities_module, adjust_data=gnss_distance,
                                            adjust_frequency=1)

    print("Execution time: %s seconds" % (time.time() - start_time))

    # plotting

    fig1, ax1 = plt.subplots()
    ax1.plot(real_acc_module, label='acc gnss')
    ax1.plot(accelerations_module.T, label='acc sensor')
    ax1.legend()

    fig, ax2 = plt.subplots()
Exemple #4
0
def get_trajectory_from_path(path):
    """
    parse input file from path, clean data and integrate positions

    :param path: string input file
    :return: 3 numpy array: 3xn position, 1xn times, 4xn angular position as quaternions
    """

    window_size = 20

    # currently default format is unmodified fullinertial but other formats are / will be supported
    times, coordinates, altitudes, gps_speed, heading, accelerations, angular_velocities = parse_input(
        path, [InputType.UNMOD_FULLINERTIAL])

    converts_measurement_units(accelerations, angular_velocities, gps_speed,
                               coordinates, heading)

    # get positions from GNSS data
    gnss_positions, headings_2 = get_positions(coordinates, altitudes)

    # reduce accelerations disturbance
    times, accelerations = reduce_disturbance(times, accelerations,
                                              window_size)
    # reduce angular velocities disturbance
    _, angular_velocities = reduce_disturbance(times, angular_velocities,
                                               window_size)
    # truncate other array to match length of acc, thetas, times array
    gnss_positions = gnss_positions[:,
                                    round(window_size /
                                          2):-round(window_size / 2)]

    # with "final" times now get velocities and
    real_velocities = get_velocities(times, gnss_positions)
    # scalar speed from GNSS position (better than from dataset because avoids Kalmar filter)
    real_speeds = np.linalg.norm(real_velocities, axis=0)

    # get time windows where vehicle is stationary
    stationary_times = get_stationary_times(gps_speed)

    # clear gyroscope drift
    angular_velocities = clear_gyro_drift(angular_velocities, stationary_times)
    # set times start to 0
    normalize_timestamp(times)

    # correct z-axis alignment
    accelerations, angular_velocities = correct_z_orientation(
        accelerations, angular_velocities, stationary_times)

    # remove g
    accelerations[2] -= accelerations[
        2, stationary_times[0][0]:stationary_times[0][-1]].mean()

    # correct alignment in xy plane
    #accelerations = correct_xy_orientation(accelerations, angular_velocities)

    motion_time = get_first_motion_time(stationary_times, gnss_positions)
    initial_angular_position = get_initial_angular_position(
        gnss_positions, motion_time)

    # convert to laboratory frame of reference
    accelerations, angular_positions = rotate_accelerations(
        times, accelerations, angular_velocities, heading,
        initial_angular_position)

    # rotate to align y to north, x to east
    accelerations = align_to_world(gnss_positions, accelerations, motion_time)
    # angular position doesn't need to be aligned to world if starting angular position is already aligned and following
    # angular positions are calculated from that

    initial_speed = np.array([[gps_speed[0]], [0], [0]])
    # integrate acceleration with gss velocities correction
    correct_velocities = cumulative_integrate(times,
                                              accelerations,
                                              initial_speed,
                                              adjust_data=real_velocities,
                                              adjust_frequency=1)

    if sign_inversion_is_necessary(correct_velocities):
        accelerations *= -1
        correct_velocities *= -1

    correct_position = cumulative_integrate(times,
                                            correct_velocities,
                                            adjust_data=gnss_positions,
                                            adjust_frequency=1)

    return correct_position, times, angular_positions
Exemple #5
0
    # convert to laboratory frame of reference
    accelerations, angular_positions = rotate_accelerations(
        times, accelerations, angular_velocities, heading,
        initial_angular_position)

    # rotate to align y to north, x to east
    accelerations = align_to_world(gnss_positions, accelerations, motion_time)
    # angular position doesn't need to be aligned to world if starting angular position is already aligned and following
    # angular positions are calculated from that

    initial_speed = np.array([[gps_speed[0]], [0], [0]])
    # integrate acceleration with gss velocities correction
    correct_velocities = cumulative_integrate(times,
                                              accelerations,
                                              initial_speed,
                                              adjust_data=real_velocities,
                                              adjust_frequency=1)

    if sign_inversion_is_necessary(correct_velocities):
        accelerations *= -1
        correct_velocities *= -1

    correct_position = cumulative_integrate(times,
                                            correct_velocities,
                                            adjust_data=gnss_positions,
                                            adjust_frequency=1)

    print("Execution time: %s seconds" % (time.time() - start_time))

    # plotting