Exemple #1
0
def skeletonize(path_input: str, path_output: str) -> None:
    """
        It takes binary raster as input and mark its central line.
        This central line is represents singel line raster instead of thick line.

        Input:
            path_input: Input path of binary raster to be processed
            path_output: Output path of raster to be saved
         Output:
            None (Data is automatically save to given path_output location)
    """
    filter = config.skeletonize_filter

    geotransform, geoprojection, size, arr = io.read_tif(path_input)
    """Array input must be binary
    Output array is also binary
    """
    arr[arr > 0] = 1
    dilate_kernel = np.ones((filter, filter), np.uint8)
    arr = cv2.dilate(arr, dilate_kernel)
    skeleton = skt(arr)

    logging.info('Saving skeleton to %s' % (path_output))
    io.write_tif(path_output, skeleton * 255, geotransform, geoprojection,
                 size)
    return path_output
Exemple #2
0
def erosion(path_input: str, filter: int, path_output: str) -> None:
    """
        Input :
            path_input: Input path of TIF to be processed
            filter: Size Erosion Filer to be used to clean image
            path_output: Ouput path of TIF to be saved

        output:
            None (Data is automatically save to given path_output location)

    """
    erode_kernel = np.ones((filter, filter), np.uint8)
    geotransform, geoprojection, size, arr = io.read_tif(path_input)
    # Image erosion
    erode = cv2.erode(arr, erode_kernel)

    # Image dilation
    dilate_kernel = np.ones((filter, filter), np.uint8)
    dilate = cv2.dilate(erode, dilate_kernel)

    # removing smaller pixels
    cell_size = geotransform[1]
    min_area = 9  # 9 sq.metres
    num_pixel = int(min_area / cell_size * cell_size)
    dilate = np.asarray(dilate, dtype=int)
    dilate = np.absolute(dilate)
    cleaned = remove_small_objects(dilate, min_size=num_pixel, connectivity=2)

    logging.info('Saving erosion to %s' % (path_output))
    io.write_tif(path_output, cleaned, geotransform, geoprojection, size)
    return path_output
Exemple #3
0
def watershedSegmentation(path_input: str, filter: int,
                          path_output: str) -> None:
    """
        Input: 
            path_input: Input path of TIF to be processed
            filter: Size Erosion Filer to be used to clean image
            path_output: Ouput path of TIF to be saved
        Output:
            None (Output is automatically save to path_output location given)
    """
    geotransform, geoprojection, size, array = io.read_tif(path_input)
    """ Minimum distance between two objects is 7.5m
        distance = 5/cell_size
    """
    dim_array = array.shape
    if len(dim_array) > 2:
        depth = dim_array[2]
    else:
        depth = 1

    labels = np.zeros(array.shape)
    for i in range(depth):
        try:
            arr = array[:, :, i]
        except Exception as e:
            arr = array[:, :]
        distance = int(config.minimum_distance_watershed / geotransform[1])
        D = ndi.distance_transform_edt(arr)
        localMax = peak_local_max(D,
                                  indices=False,
                                  min_distance=distance,
                                  labels=arr)

        # 4 Connected pixels, we can also use 8 connected pixels
        if int(filter) == 4:
            filter = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]
        elif int(filter) == 8:
            filter = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]

        filter = np.asarray(filter)

        # markers = ndimage.label(localMax, structure=filter)[0]
        markers = ndi.label(localMax, structure=filter)[0]
        try:
            labels[:, :, i] = watershed(-D, markers, mask=arr)
        except Exception as e:
            labels = watershed(-D, markers, mask=arr)
    logging.info('Saving watershed segmentation to %s' % (path_output))
    io.write_tif(path_output, labels, geotransform, geoprojection, size)
def skeletonize(path_image, path_output):
    filter = 5

    geotransform, geoprojection, size, arr = io.read_tif(path_image)
    """Array input must be binary
    Output array is also binary
    """
    arr[arr > 0] = 1
    dilate_kernel = np.ones((filter, filter), np.uint8)
    arr = cv2.dilate(arr, dilate_kernel)
    skeleton = skt(arr)

    print('Saving skeleton to %s' % (path_output))
    io.write_tif(path_output, skeleton * 255, geotransform, geoprojection,
                 size)
    return path_output
def waterseg(path_image, filter, path_output):

    geotransform, geoprojection, size, array = io.read_tif(path_image)
    """ Minimum distance between two objects is 5m. 
    distance = 5/cell_size
    """
    dim_array = array.shape
    if len(dim_array) > 2:
        depth = dim_array[2]
    else:
        depth = 1

    labels = np.zeros(array.shape)
    for i in range(depth):
        try:
            arr = array[:, :, i]
        except:
            arr = array[:, :]
        distance = int(7.5 / geotransform[1])
        D = ndi.distance_transform_edt(arr)
        localMax = peak_local_max(D,
                                  indices=False,
                                  min_distance=distance,
                                  labels=arr)

        # 4 Connected pixels, we can also use 8 connected pixels
        if int(filter) == 4:
            filter = [[0, 1, 0], [1, 1, 1], [0, 1, 0]]
        elif int(filter) == 8:
            filter = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]

        filter = np.asarray(filter)

        # markers = ndimage.label(localMax, structure=filter)[0]
        markers = ndi.label(localMax, structure=filter)[0]
        try:
            labels[:, :, i] = watershed(-D, markers, mask=arr)
        except:
            labels = watershed(-D, markers, mask=arr)
    print('Saving watershed segmentation to %s' % (path_output))
    io.write_tif(path_output, labels, geotransform, geoprojection, size)
    return path_output
def erosion(path_image, filter, path_output):

    erode_kernel = np.ones((filter, filter), np.uint8)
    geotransform, geoprojection, size, arr = io.read_tif(path_image)
    # Image erosion
    erode = cv2.erode(arr, erode_kernel)

    # Image dilation
    dilate_kernel = np.ones((filter, filter), np.uint8)
    dilate = cv2.dilate(erode, dilate_kernel)

    # removing smaller pixels
    cell_size = geotransform[1]
    min_area = 9  # 9 sq.metres
    num_pixel = int(min_area / cell_size * cell_size)
    dilate = np.asarray(dilate, dtype=int)
    dilate = np.absolute(dilate)
    cleaned = remove_small_objects(dilate, min_size=num_pixel, connectivity=2)

    print('Saving erosion to %s' % (path_output))
    io.write_tif(path_output, cleaned, geotransform, geoprojection, size)
    return path_output
Exemple #7
0
    print('Saving Prediction...')
    predict_image = []
    for i in range(predict_result.shape[0]):
        # im = train_images[i]
        lb = predict_result[i, :, :, :]
        lb = np.round(lb, decimals=0)
        path_im = join(
            path_predict,
            basename(normpath(dirname(train_set.image_part_list[k][i]))),
            basename(data['name'][i]))
        checkdir(os.path.dirname(path_im))
        predict_image.append(path_im)

        # Saving data to disk
        current_process.append('saving_prediction')
        io.write_tif(path_im, lb * 255, data['geotransform'][i],
                     data['geoprojection'][i], data['size'][i])
        current_process.append('saving_prediction')

    # Flushing all the memory
    train_image = []
    predict_result = []
    lb = []

timing['Processing'] = mtime.time() - st_time

# Merging tiled dataset to single tif
time = mtime.time()
print('Merging and compressing %s tiled dataset. This may take a while' %
      (str(train_set.count)))
current_process.append('merging')
Exemple #8
0
            predict_image = []

            # Iterating over predictions and saving it to geoReferenced TIF files
            temp_listPrediction = []
            for i in range(len(testing_list_ids)):
                file_name = os.path.basename(testing_geoMap[i]['path'])

                labelPrediction = predictResult[i, :, :, :]
                # Setting 0.5 as threshold
                labelPrediction = np.round(labelPrediction, decimals=0)

                temp_path_output = os.path.join(temp_path_predict, file_name)

                # Saving data to disk
                io.write_tif(temp_path_output, labelPrediction * 255,
                             testing_geoMap[i]['geoTransform'],
                             testing_geoMap[i]['geoProjection'],
                             testing_geoMap[i]['size'])

                temp_listPrediction.append(temp_path_output)

            timing['Processing'] = mtime.time() - st_time

            # Merging Gridded dataset to single TIF
            time = mtime.time()
            logging.info('Merging and compressing gridded dataset: {}. \
                Total number of files: {}. This may take a while'.format(
                temp_path_data, len(temp_listPrediction)))

            temp_merged_output = os.path.join(path_merged_prediction, file)
            io.mergeTile(listTIF=temp_listPrediction,
                         path_output=temp_merged_output)