Exemple #1
0
def train_adversaries(trainloader,
                      valloader,
                      testloader,
                      writer,
                      navib_model=None):
    if navib_model is None:
        dummy_x, _, _ = trainset.__getitem__(0)
        input_dim = dummy_x.size(0)
    else:
        navib_model.eval()
        input_dim = args.latent_dim
    output_dim = 5
    hidden_dim = args.adv_hidden_dim

    hidden_layers = 1
    if navib_model is None:
        name = 'Baseline_Adv'
    else:
        name = navib_model.name + '_New_Adv'
    adv = models.Adv(name + str(hidden_layers),
                     input_dim=input_dim,
                     output_dim=output_dim,
                     hidden_dim=hidden_dim,
                     hidden_layers=hidden_layers).to(device)
    opt = optim.Adam(adv.parameters(), lr=args.adv_lr, weight_decay=1e-4)
    train_adv(adv, opt, trainloader, valloader, testloader, writer,
              navib_model)
def train_adversaries(trainset, valset, testset, writer, navib_model=None):
    if navib_model is None:
        # For baseline, the adversaries train on the original data and not the latent space
        dummy_x, _, _ = trainset.__getitem__(0)
        input_dim = dummy_x.size(0)
    else:
        navib_model.eval()
        input_dim = args.latent_dim  # * 2
    output_dim = 1
    hidden_dim = args.adv_hidden_dim

    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=args.adv_batch_size,
                                              shuffle=True)
    valloader = torch.utils.data.DataLoader(valset,
                                            batch_size=args.adv_batch_size,
                                            shuffle=False)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=args.adv_batch_size,
                                             shuffle=False)

    adv_hidden_layers = 3
    if navib_model is None:
        name = 'Baseline_Adv'
    else:
        name = navib_model.name + '_Adv'
    adv = models.Adv(name + str(adv_hidden_layers),
                     input_dim=input_dim,
                     output_dim=output_dim,
                     hidden_dim=hidden_dim,
                     hidden_layers=adv_hidden_layers).to(device)
    opt = optim.Adam(adv.parameters(), lr=args.adv_lr)
    train_adv(adv, opt, trainloader, valloader, testloader, writer,
              navib_model)
Exemple #3
0
def train_navib(model, opt, trainloader, valloader, testloader, writer):
    lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.65)
    if args.comp_type == 'adv_training':
        disc = models.Adv('Disc', input_dim=args.latent_dim, output_dim=2,
                          hidden_dim=args.adv_hidden_dim, hidden_layers=3).to(device)
        disc_opt = optim.Adam(disc.parameters(), lr=args.disc_lr)
    elif args.comp_type == 'uai':
        disc = models.UAIDisentangler(latent_dim=args.latent_dim).to(device)
        disc_opt = optim.Adam(disc.parameters(), lr=args.disc_lr)
    for epoch in range(1, args.num_epochs + 1):
        if args.comp_type == 'adv_training' or args.comp_type == 'uai':
            navib_epoch(epoch, model, opt, trainloader, writer, tag='train',
                        disc=disc, disc_opt=disc_opt)
        else:
            navib_epoch(epoch, model, opt, trainloader, writer, tag='train')
        navib_epoch(epoch, model, opt, valloader, writer, tag='val')
        navib_epoch(epoch, model, opt, testloader, writer, tag='test')
        if epoch % args.save_step == 0:
            name = 'Navib_' + str(epoch)
            path = os.path.join(model_path, name + '.pth')
            model.name = name
            torch.save(model.state_dict(), path)
        lr_scheduler.step()
        if args.alpha < args.alpha_max:
            args.alpha *= args.alpha_gamma
    name = 'Navib'
    model.name = name
    path = os.path.join(model_path, name + '.pth')
    torch.save(model.state_dict(), path)
Exemple #4
0
def start_adversarial_training(vae, writer, trainloader, valloader,
                               testloader):
    num_hidden = 3
    adv = models.Adv(name='Adv' + str(num_hidden),
                     input_dim=latent_dim,
                     output_dim=10,
                     hidden_layers=num_hidden).to(device)
    adv_optimizer = optim.Adam(adv.parameters(), lr=args.adv_lr)
    train_adversary(adv, vae, adv_optimizer, args.adv_num_epochs, writer,
                    trainloader, valloader, testloader)
Exemple #5
0
def train_navib(model, opt, trainloader, valloader, testloader, writer):
    lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=100, gamma=0.5)
    best_val_acc = 0
    if args.comp_type == 'adv_training':
        disc = models.Adv('Disc',
                          input_dim=args.latent_dim,
                          output_dim=5,
                          hidden_dim=args.adv_hidden_dim,
                          hidden_layers=args.disc_hidden_layers).to(device)
        disc_opt = optim.Adam(disc.parameters(), lr=args.disc_lr)
    for epoch in range(1, args.num_epochs + 1):
        if args.comp_type == 'adv_training':
            navib_epoch(epoch,
                        model,
                        opt,
                        trainloader,
                        writer,
                        tag='train',
                        disc=disc,
                        disc_opt=disc_opt)
        else:
            navib_epoch(epoch, model, opt, trainloader, writer, tag='train')

        val_acc = navib_epoch(epoch, model, opt, valloader, writer, tag='val')
        test_Acc = navib_epoch(epoch,
                               model,
                               opt,
                               testloader,
                               writer,
                               tag='test')

        if val_acc > best_val_acc:
            name = 'Navib_best_val_acc'
            model.name = name
            path = os.path.join(model_path, name + '.pth')
            torch.save(model.state_dict(), path)
            best_val_acc = val_acc
            message = 'Best val acc {}. test_acc{}. Saving model {}'.format(
                best_val_acc, test_Acc, path)
            print(message)
            logf.write(message + '\n')
        if epoch % args.save_step == 0:
            name = 'Navib_ckpt_{}'.format(epoch)
            model.name = name
            path = os.path.join(model_path, name + '.pth')
            torch.save(model.state_dict(), path)
            print('Saving checkpoint {}'.format(path))

        lr_scheduler.step()
        if args.alpha < args.alpha_max:
            args.alpha *= args.alpha_gamma
    name = 'Navib'
    model.name = name
    path = os.path.join(model_path, name + '.pth')
    torch.save(model.state_dict(), path)
Exemple #6
0
def main(model, trainloader, valloader, testloader, opt, writer):
    #lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.65)
    if args.comp_type == 'adv_training':
        num_hidden = 3
        disc = models.Adv(name='Adv' + str(num_hidden),
                          input_dim=latent_dim,
                          output_dim=10,
                          hidden_layers=num_hidden).to(device)
        disc_opt = optim.Adam(disc.parameters(), lr=args.disc_lr)
    for epoch in range(args.num_epochs):
        if args.comp_type == 'adv_training':
            train_epoch(epoch, model, trainloader, opt, writer, disc, disc_opt)
        else:
            train_epoch(epoch, model, trainloader, opt, writer)
        test_epoch(epoch, model, valloader, opt, writer, tag='val')
        test_epoch(epoch, model, testloader, opt, writer, tag='test')
        if args.comp_lambda < args.comp_lambda_max:
            args.comp_lambda *= args.comp_gamma
        #lr_scheduler.step()
    print('Saving the model')
    torch.save(model.state_dict(), net_path)