from src.analysis.data_models.fahey_SIR_acute.parameters import d from src.modules.exp_data_model import Sim from src.models.virus_models import vir_model_SIR import src.modules.proc as proc import src.modules.pl as pl import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns sns.set(context="poster", style="ticks") time = np.linspace(0, 80, 300) sim = Sim(time=time, name="acute", params=d, prolif_type="timer", virus_model=vir_model_SIR) #sim.set_fit_params(fit_date, fit_name) sim.params["SIR_r0"] = 1.5 sim.name = "r1.5" cells1, molecules1 = sim.run_sim() sim.params["SIR_r0"] = 3 sim.name = "r3" cells2, molecules2 = sim.run_sim() sim.params["SIR_r0"] = 5 sim.name = "r5" cells3, molecules3 = sim.run_sim()
os.makedirs(path + today) # load data path_data = "../data/" df_fahey = pd.read_csv(path_data + "fahey_data.csv") data_arm = df_fahey[df_fahey.name == "Arm"] data_cl13 = df_fahey[df_fahey.name == "Cl13"] # load fit result fit_name = "2021-02-15_fit" fit_date = "2021-02-15" time = np.linspace(0, 80, 300) sim = Sim(time=time, name=fit_name, prolif_type="timer_il2", params=d, virus_model=vir_model_const) sim.set_fit_params(fit_date, fit_name) # run simulation cells, molecules = run_pipeline(sim) # ============================================================================= # plot data # ============================================================================= xlabel = "time post infection (d)" ylabel = "cells" xticks = [0, 10, 20, 30, 40, 50, 60] df1 = cells[cells.cell.isin(["Tfh_all", "nonTfh"])]
if not os.path.exists(path + today): os.makedirs(path + today) # ============================================================================= # get data # ============================================================================= path_data = "../data/" df_fahey = pd.read_csv(path_data + "fahey_data.csv") df_fahey.loc[df_fahey["cell"] == "NonTfh", "cell"] = "nonTfh" data_arm = df_fahey[df_fahey.name == "Arm"] data_cl13 = df_fahey[df_fahey.name == "Cl13"] # get model time = np.linspace(0,80,300) sim = Sim(time = time, name = today, params = d, virus_model=vir_model_const) # ============================================================================= # set parameters # ============================================================================= params = Parameters() params.add('death_tr1', value=0.05, min=0, max=0.2) params.add('death_tfhc', value=0.01, min=0, max=0.2) params.add('prolif_tr1', value=2.5, min=1, max=5.0) params.add('prolif_tfhc', value=2.5, min=1, max=5.0) params.add("pth1", value=0.3, min=0, max=1.0) params.add("ptfh", value=0.2, min=0, max=1.0) params.add("ptr1", value=0.3, min=0, max=1.0) params.add("ptfhc", expr="1.0-pth1-ptfh-ptr1") params.add("K_il2", value = 0.0001, min = 1e-7, max=1)
sns.set(context="poster") today = str(date.today()) path = "../figures/data_fits/" if not os.path.exists(path + today): os.makedirs(path + today) # load data path_data = "../data/" df_fahey = pd.read_csv(path_data + "fahey_data.csv") data_arm = df_fahey[df_fahey.name == "Arm"] data_cl13 = df_fahey[df_fahey.name == "Cl13"] time = np.arange(0, 80, 0.01) sim = Sim(time=time, name="new_model", prolif_type="timer_il2", params=d, virus_model=vir_model_const) # run simulation cells, molecules = run_pipeline(sim) # ============================================================================= # plot data # ============================================================================= xlabel = "time post infection (d)" ylabel = "cells" xticks = [0, 10, 20, 30, 40, 50, 60] df1 = cells[cells.cell.isin(["Tfh_all", "nonTfh"])] g = sns.relplot(data=df1,
from src.modules.exp_data_model import Sim from src.models.virus_models import vir_model_SIR import matplotlib.pyplot as plt import numpy as np import seaborn as sns sns.set(context="poster", style="ticks") # load fit result fit_name = "20210119_fit" fit_date = "2021-01-19" time = np.arange(0, 80, 0.01) sim = Sim(time=time, name=fit_name, prolif_type="timer_il2", params=d, virus_model=vir_model_SIR) #sim.set_fit_params(fit_date, fit_name) sim.params["SIR_r0"] = 10.0 sim.name = "r1.5" cells1, molecules1 = sim.run_sim() mycells = [ "Precursors", "Th1_eff", "Tfh_eff", "Tr1_all", "Tfh_chr", "Total_CD4" ] cells1 = cells1.loc[cells1.cell.isin(mycells)] g = sns.relplot(data=cells1, x="time", y="value",
from src.analysis.data_models.fahey_SIR.parameters import d from src.modules.exp_data_model import Sim from src.models.virus_models import vir_model_SIR2 import src.modules.proc as proc import src.modules.pl as pl import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns sns.set(context="talk", style="ticks") time = np.arange(0, 80, 0.01) sim = Sim(time=time, name="r0_effects", prolif_type="timer_il2", params=d, virus_model=vir_model_SIR2) sim.params["SIR_r0"] = 1.5 sim.name = "r1.5" cells1, molecules1 = sim.run_sim() sim.params["SIR_r0"] = 3 sim.name = "r3" cells2, molecules2 = sim.run_sim() sim.params["SIR_r0"] = 5 sim.name = "r5" cells3, molecules3 = sim.run_sim()
from src.analysis.data_models.fahey_ag_dose.parameters import d from src.modules.exp_data_model import Sim from src.models.virus_models import vir_model_const import src.modules.proc as proc import src.modules.pl as pl import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns from matplotlib.ticker import NullFormatter sns.set(context = "poster", style = "ticks", rc = {"lines.linewidth" : 5}) time = np.arange(0,80,0.01) sim = Sim(time = time, name = "r0_effects", prolif_type= "timer", params = d, virus_model=vir_model_const) pname = "vir_load" sim.params[pname] = 0 sim.name = "low dose" cells1, molecules1 = sim.run_sim() sim.params[pname] = 1 sim.name = "high dose" cells2, molecules2 = sim.run_sim() cells = pd.concat([cells1, cells2]) molecules = pd.concat([molecules1, molecules2]) mycells = ["Th1_eff", "Tfh_eff", "Tr1_all", "Tfh_chr", "Total_CD4"] cells = cells.loc[cells.cell.isin(mycells)]