Exemple #1
0
def guiRun_network():
    nd = Net_data(
        model_path=tbx_model_path.value,
        raw_data_path=tbx_raw_data_path.value,
        dropout=float(tbx_dropout.value),
        filtered_data_path=tbx_filtered_data_path.value,
        stride=int(tbx_stride.value),
        epochs=int(tbx_epochs.value),
        from_raw_data=bool(cbo_from_raw_data.value == "True"),
        evaluate_training=bool(cbo_evaluate_training.value == "True"),
        session_filter=Filter(func=hann,
                              search_radius=int(tbx_search_radius.value),
                              step_size=int(tbx_step_size.value)),
        time_shift_steps=int(tbx_time_shift_steps.value),
        shuffle_data=bool(cbo_shuffle_data.value == "True"),
        shuffle_factor=int(tbx_shuffle_factor.value),
        time_shift_iter=int(tbx_time_shift_iter.value),
        initial_timeshift=int(tbx_initial_timeshift.value),
        metric_iter=int(tbx_metric_iter.value),
        batch_size=int(tbx_batch_size.value),
        slice_size=int(tbx_slice_size.value),
        x_max=int(tbx_x_max.value),
        y_max=int(tbx_y_max.value),
        x_min=int(tbx_x_min.value),
        y_min=int(tbx_y_min.value),
        x_step=int(tbx_x_step.value),
        y_step=int(tbx_y_step.value),
        early_stopping=bool(cbo_early_stopping.value == "True"),
        naive_test=bool(cbo_naive_test.value == "True"),
        valid_ratio=float(tbx_valid_ratio.value),
        testing_ratio=float(tbx_testing_ratio.value),
        k_cross_validation=int(tbx_k_cross_validation.value),
        load_model=bool(cbo_load_model.value == "True"),
        train_model=bool(cbo_train_model.value == "True"),
        keep_neurons=-1,
        neurons_kept_factor=float(tbx_neurons_kept_factor.value),
        lw_classifications=None
        if not tbx_lw_classifications.value.isnumeric() else int(
            tbx_lw_classifications.value),
        lw_normalize=bool(cboLw_normalize.value == "True"),
        lw_differentiate_false_licks=bool(
            cbo_lw_differentiate_false_licks.value == "True"),
        num_wells=int(tbx_num_wells.value),
        metric=tbx_metric.value,
        valid_licks=None
        if tbx_valid_licks.value == 'None' else tbx_valid_licks.value,
        filter_tetrodes=None
        if tbx_filter_tetrodes.value == 'None' else tbx_filter_tetrodes.value,
        phases=None if tbx_phases.value == 'None' else tbx_phases.value,
        phase_change_ids=None if tbx_phase_change_ids.value == 'None' else
        tbx_phase_change_ids.value,
        number_of_bins=int(tbx_number_of_bins.value),
        start_time_by_lick_id=None
        if not tbx_start_time_by_lick_id.value.isnumeric() else int(
            tbx_start_time_by_lick_id.value),
        behavior_component_filter=None if cbo_behavior_component.value
        == 'None' else cbo_behavior_component.value)
    if tbx_metric.value == "map":
        session = initiate_network(nd)
        run_network(nd, session)
    else:
        session = initiate_lickwell_network(nd)  # Initialize session
        X, y, nd, session, = lickwells_io(session,
                                          nd,
                                          _excluded_wells=[1],
                                          shift=nd.initial_timeshift,
                                          target_is_phase=False,
                                          lickstart=0,
                                          lickstop=5000)

    pass
Exemple #2
0
                  model_path=MODEL_PATH,
                  raw_data_path=RAW_DATA_PATH,
                  filtered_data_path=FILTERED_DATA_PATH,
                  k_cross_validation=1,
                  valid_ratio=0.1,
                  naive_test=True,
                  from_raw_data=True,
                  epochs=30,
                  dropout=0.65,
                  behavior_component_filter=None,
                  filter_tetrodes=filter_tetrodes,
                  shuffle_data=True,
                  shuffle_factor=10,
                  batch_size=50,
                  switch_x_y=combination_data_set)
    session = initiate_network(nd)
    run_network(nd, session)

    nd = Net_data(initial_timeshift=-2500,
                  time_shift_iter=-500,
                  time_shift_steps=20,
                  early_stopping=False,
                  model_path=MODEL_PATH,
                  raw_data_path=RAW_DATA_PATH,
                  filtered_data_path=FILTERED_DATA_PATH,
                  k_cross_validation=1,
                  valid_ratio=0.1,
                  naive_test=True,
                  from_raw_data=False,
                  epochs=30,
                  dropout=0.65,
Exemple #3
0
def filter_well(x,y,well):
    


if __name__ == '__main__':

    # prefrontal cortex

    # MODEL_PATH = "G:/master_datafiles/trained_networks/MLP_PFC_2018-11-06_1000_200_100_dmf/"
    # RAW_DATA_PATH = "G:/master_datafiles/raw_data/2018-04-09_14-39-52/"
    # FILTERED_DATA_PATH = "G:/master_datafiles/filtered_data/neocortex_hann_win_size_20.pkl"

    # hippocampus

    MODEL_PATH = "G:/master_datafiles/trained_networks/MLP_HC_2018-11-11_1000_200_100_dmf/"
    RAW_DATA_PATH = "G:/master_datafiles/raw_data/2018-05-16_17-13-37/"
    FILTERED_DATA_PATH = "G:/master_datafiles/filtered_data/hippocampus_hann_win_size_25_09-5_7.pkl"
    NEURONS_KEPT_FACTOR = 1

    WIN_SIZE = 20
    SEARCH_RADIUS = WIN_SIZE * 2
    session_filter = Filter(func=hann, search_radius=SEARCH_RADIUS, step_size=WIN_SIZE)

    nd = Net_data(

        # Program execution settings

        EPOCHS=20,
        SEARCH_RADIUS=SEARCH_RADIUS,
        WIN_SIZE=WIN_SIZE,
        INITIAL_TIMESHIFT=0,
        TIME_SHIFT_ITER=200,
        TIME_SHIFT_STEPS=1,
        METRIC_ITER=1,  # after how many epochs network is validated <---
        SHUFFLE_DATA=True,  # whether to randomly shuffle the data in big slices
        SHUFFLE_FACTOR=500,
        EARLY_STOPPING=True,
        NAIVE_TEST=False,
        K_CROSS_VALIDATION=1,
        TRAIN_MODEL=True,

        # Input data parameters

        SLICE_SIZE=1000,
        Y_SLICE_SIZE=200,
        STRIDE=100,
        BATCH_SIZE=50,
        VALID_RATIO=0.1,
        X_MAX=240,
        Y_MAX=190,
        X_MIN=0,
        Y_MIN=100,
        X_STEP=3,
        y_step=3,
        LOAD_MODEL= False,
        session_filter=session_filter,
        MODEL_PATH=MODEL_PATH,
        r2_scores_train=[],
        r2_scores_valid=[],
        acc_scores_train=[],
        acc_scores_valid=[],
        avg_scores_train=[],
        avg_scores_valid=[],
        RAW_DATA_PATH=RAW_DATA_PATH,
    )
    X,y,session = initiate_network(nd)
    run_network(X,y,nd,session)