def test_infinity(self): expressions = [('2^3000', N('^', L(2), L(3000))), ('2^-3000', N('^', L(2), -L(3000)))] # ('2^99999999999', None), # ('2^-99999999999', 0.0)] run_expressions(Parser, expressions)
def test_extract_fraction_terms_leaf(self): root, expect = tree('(ba) / a, a / a * b / 1') n, d = root self.assertEqual( extract_fraction_terms(root, (Scope(n), Scope(N(OP_MUL, d)), n[1], d)), expect) root, expect = tree('a / (ab), a / a * 1 / b') n, d = root self.assertEqual( extract_fraction_terms(root, (Scope(N(OP_MUL, n)), Scope(d), n, d[0])), expect)
def test_match_extract_fraction_terms(self): root, a, b, c = tree('(ab) / (ca), a, b, c') n, d = root self.assertEqualPos( match_extract_fraction_terms(root), [P(root, divide_fraction_by_term, (Scope(n), Scope(d), a, a))]) lscp = lambda l: Scope(N(OP_MUL, l)) n, d = root = tree('(ab) / a') self.assertEqualPos( match_extract_fraction_terms(root), [P(root, divide_fraction_by_term, (Scope(n), lscp(d), a, a))]) n, d = root = tree('a / (ab)') self.assertEqualPos( match_extract_fraction_terms(root), [P(root, divide_fraction_by_term, (lscp(n), Scope(d), a, a))]) n, d = root = tree('(abc) / (cba)') self.assertEqualPos(match_extract_fraction_terms(root), [ P(root, divide_fraction_by_term, (Scope(n), Scope(d), a, a)), P(root, divide_fraction_by_term, (Scope(n), Scope(d), b, b)), P(root, divide_fraction_by_term, (Scope(n), Scope(d), c, c)) ]) root = tree('a / a') self.assertEqualPos(match_extract_fraction_terms(root), []) (ap, b), aq = n, d = root = tree('(a ^ p * b) / a ^ q') self.assertEqualPos( match_extract_fraction_terms(root), [P(root, extract_fraction_terms, (Scope(n), lscp(d), ap, aq))]) (a, b), aq = n, d = root = tree('(ab) / a ^ q') self.assertEqualPos( match_extract_fraction_terms(root), [P(root, extract_fraction_terms, (Scope(n), lscp(d), a, aq))]) (ap, b), a = n, d = root = tree('(a ^ p * b) / a') self.assertEqualPos( match_extract_fraction_terms(root), [P(root, extract_fraction_terms, (Scope(n), lscp(d), ap, a))]) (l2, a), l3 = n, d = root = tree('(2a) / 3') self.assertEqualPos(match_extract_fraction_terms(root), [P(root, extract_nominator_term, (2, a))]) a, l3 = n, d = root = tree('a / 3') self.assertEqualPos(match_extract_fraction_terms(root), [P(root, extract_nominator_term, (1, a))]) root = tree('(2 * 4) / 3') self.assertEqualPos(match_extract_fraction_terms(root), []) n, d = root = tree('(2a) / 2') self.assertEqualPos(match_extract_fraction_terms(root), [ P(root, extract_nominator_term, (2, a)), P(root, divide_fraction_by_term, (Scope(n), lscp(d), 2, 2)) ])
def test_basic_on_exp(self): expressions = [('4', L(4)), ('3+4', L(3) + L(4)), ('3-4', L(3) + -L(4)), ('3/4', L(3) / L(4)), ('-4', -L(4)), ('3^4', N('^', L(3), L(4))), ('(2)', L(2))] run_expressions(Parser, expressions)
def test_concat_easy(self): expressions = [ ('xy', N('*', L('x'), L('y'))), ('2x', N('*', L(2), L('x'))), ('x4', N('*', L('x'), L(4))), ('3 4', N('*', L(3), L(4))), ('(x)4', N('*', L('x'), L(4))), ('(3+4)2', N('*', N('+', L(3), L(4)), L(2))), ] run_expressions(Parser, expressions)
def test_nary_node(self): a, b, c, d = tree('a,b,c,d') self.assertEqualNodes(nary_node('+', [a]), a) self.assertEqualNodes(nary_node('+', [a, b]), N('+', a, b)) self.assertEqualNodes(nary_node('+', [a, b, c]), N('+', N('+', a, b), c)) self.assertEqualNodes(nary_node('+', [a, b, c, d]), N('+', N('+', N('+', a, b), c), d))
def test___lt__(self): self.assertTrue(L(1) < L(2)) self.assertFalse(L(1) < L(1)) self.assertFalse(L(2) < L(1)) self.assertTrue(L(2) < N('+', L(1), L(2))) self.assertFalse(N('+', L(1), L(2)) < L(1)) self.assertTrue(N('^', L('a'), L(2)) < N('^', L('a'), L(3))) self.assertTrue(N('^', L(2), L('a')) < N('^', L(3), L('a'))) self.assertTrue( N('*', L(2), N('^', L('a'), L('b'))) < N('*', L(3), N('^', L('a'), L('b')))) self.assertFalse(N('^', L('a'), L(3)) < N('^', L('a'), L(2)))
def setUp(self): self.l = [L(1), N('*', L(2), L(3)), L(4), L(5)] self.n, self.f = tree('a + b + cd,f') (self.a, self.b), self.cd = self.n self.c, self.d = self.cd self.scope = Scope(self.n)
def test_constructor(self): assert ParserWrapper(Parser).run(['1+4']) \ == N('+', L(1), L(4))
def test_extract_polynome_properties_power(self): power = N('^', L('a'), L(2)) self.assertEqual(power.extract_polynome_properties(), (L(1), L('a'), L(2)))
def test_is_nary(self): self.assertTrue(N('+', *self.l[:2]).is_nary()) self.assertTrue(N('-', *self.l[:2]).is_nary()) self.assertTrue(N('*', *self.l[:2]).is_nary()) self.assertFalse(N('^', *self.l[:2]).is_nary())
def test_is_power(self): self.assertTrue(N('^', *self.l[2:]).is_power()) self.assertFalse(N('+', *self.l[2:]).is_power())
def test_pow_nested(self): # a^b^c = a^(b^c) != (a^b)^c a, b, c, d, e = L('a'), L('b'), L('c'), L('d'), L('e') expressions = [ ('a^b^c', N('^', a, N('^', b, c))), ('-1^b^c', -N('^', L(1), N('^', b, c))), ('ab^c', N('*', a, N('^', b, c))), ('a(b)^c', N('*', a, N('^', b, c))), ('a(b+c)^(d+e)', N('*', a, N('^', N('+', b, c), N('+', d, e)))), ('(a(b+c))^(d+e)', N('^', N('*', a, N('+', b, c)), N('+', d, e))), ] run_expressions(Parser, expressions)
def test_concat_intermediate(self): expressions = [ ('(3+4)(5+7)', N('*', N('+', L(3), L(4)), N('+', L(5), L(7)))), ('(a+b)(c+d)', N('*', N('+', L('a'), L('b')), N('+', L('c'), L('d')))), ('a+b(c+d)', N('+', L('a'), N('*', L('b'), N('+', L('c'), L('d'))))), ('abcd', N('*', N('*', N('*', L('a'), L('b')), L('c')), L('d'))), ('ab(c)d', N('*', N('*', N('*', L('a'), L('b')), L('c')), L('d'))), ('ab*(c)*d', N('*', N('*', N('*', L('a'), L('b')), L('c')), L('d'))), ('ab*(c)^d', N('*', N('*', L('a'), L('b')), N('^', L('c'), L('d')))), ] run_expressions(Parser, expressions)
def test_is_op(self): self.assertTrue(N('+', *self.l[:2]).is_op(OP_ADD)) self.assertFalse(N('-', *self.l[:2]).is_op(OP_ADD))
def test_divide_fraction_by_term(self): (ab, a), expect = root = tree('(ab) / a, b') args = Scope(ab), Scope(N(OP_MUL, a)), ab[0], a self.assertEqual(divide_fraction_by_term(root, args), expect)
def test_is_leaf(self): self.assertTrue(L(2).is_leaf) self.assertFalse(N('+', *self.l[:2]).is_leaf)
def test_get_scope_binary(self): plus = N('+', *self.l[:2]) self.assertEqual(get_scope(plus), self.l[:2])
def test_is_power_exponent(self): self.assertTrue(N('^', *self.l[2:]).is_power(5)) self.assertFalse(N('^', *self.l[2:]).is_power(2))
def test_get_scope_nested_right(self): plus = N('+', self.l[0], N('+', *self.l[1:3])) self.assertEqual(get_scope(plus), self.l[:3])
def test_extract_polynome_properties_None(self): self.assertIsNone(N('+').extract_polynome_properties())
def test_get_scope_nested_deep(self): plus = N('+', N('+', N('+', *self.l[:2]), self.l[2]), self.l[3]) self.assertEqual(get_scope(plus), self.l)
def test_extract_polynome_properties_coefficient_exponent_int(self): times = N('*', L(3), N('^', L('a'), L(2))) self.assertEqual(times.extract_polynome_properties(), (L(3), L('a'), L(2)))
def test_diagnostic_test(self): run_expressions(Parser, [ ('5(a-2b)', L(5) * (L('a') + -(L(2) * 'b'))), ('-(3a+6b)', -(L(3) * L('a') + L(6) * 'b')), ('18-(a-12)', L(18) + -(L('a') + -L(12))), ('-p-q+5(p-q)-3q-2(p-q)', -L('p') + -L('q') + L(5) * (L('p') + -L('q')) + -(L(3) * 'q') \ + -(L(2) * (L('p') + -L('q'))) ), ('(2+3/7)^4', N('^', N('+', L(2), N('/', L(3), L(7))), L(4)) ), ('x^3*x^2*x', N('*', N('*', N('^', L('x'), L(3)), N('^', L('x'), L(2))), L('x') ) ), ('-x^3*-2x^5', -(L('x') ** L(3) * -L(2) * L('x') ** L(5)) ), ('(7x^2y^3)^2/(7x^2y^3)', N('/', N('^', N('*', N('*', L(7), N('^', L('x'), L(2))), N('^', L('y'), L(3)) ), L(2)), N('*', N('*', L(7), N('^', L('x'), L(2))), N('^', L('y'), L(3)) ) ) ), ])