class TestModule(unittest.TestCase):
    def setUp(self):
        self.run = MockRun()
        self.results = Results(self.run)

    def testResultsIsEmptyBeforeRecorded(self):
        self.assertEqual([], self.results.results)

    def testValidResultsCanBeRecorded(self):
        self.results.record_result(50, 0.10834)
        self.results = [(50, 0.10834)]

    def testInvalidResultsRaisesError(self):
        with self.assertRaises(AttributeError):
            self.results.record_result(50.1, 0.1)
        self.assertEqual([], self.results.results)

    def testCanBeInitialisedWithResults(self):
        results = [(34234, 32084)]
        self.results = Results(self.run, results)
        self.assertEqual(results, self.results.results)

    def testReturnCodeIsNoneBeforeRecorded(self):
        self.assertIsNone(self.results.return_code)

    def testReturnCodeCanBeRecorded(self):
        self.results.return_code = 1
        self.assertEqual(1, self.results.return_code)

    def testCanAccessRun(self):
        self.assertEqual(self.run, self.results.run)
def train_classifier(args):
    '''
    Function that performs the detection of Parkinson
    :param args: Input arguments
    :return:
    '''
    exp_name = args.exp_name
    subfolder = os.path.join(
        args.output,
        exp_name + '_' + datetime.datetime.now().strftime("%m_%d"),
        datetime.datetime.now().strftime("%H_%M"))
    file_result_patients = os.path.join(subfolder, 'res_pat.csv')
    file_result_segments = os.path.join(subfolder, 'res_seg.csv')
    model_file = os.path.join(subfolder, "model.json")
    if not os.path.exists(subfolder):
        os.makedirs(subfolder)

    val_results = Results(file_result_segments, file_result_patients)
    datas = Data(args.input_data, 1, 100, pk_level=False)

    for i in range(0, 10):
        lr = 0.001
        model = multiple_cnn1D(datas.X_data.shape[2])
        model_json = model.to_json()
        with open(model_file, "w") as json_file:
            json_file.write(model_json)

        print('fold', str(i))
        datas.separate_fold(i)
        log_filename = os.path.join(subfolder, "training_" + str(i) + ".csv")
        w_filename = os.path.join(subfolder, "weights_" + str(i) + ".hdf5")
        model = train(model, datas, lr, log_filename, w_filename)
        print('Validation !!')
        val_results.validate_patient(model, datas.X_val, datas.y_val,
                                     datas.count_val)
Exemple #3
0
def main():
    target = Target()
    test_results = Results(target)

    test_results.log(
        target.execute('cat /sys/kernel/debug/sched_features | grep _WA_ ',
                       as_root=True))

    tests_to_run = []
    # tests_to_run = ['SysBenchCpu', 'SysBenchMemory']
    # tests_to_run = ['PerfBenchFutexWake']
    time = 60
    events = [
        'sched:sched_migrate_task', 'sched:sched_stick_numa',
        'sched:sched_move_numa', 'sched:sched_swap_numa'
    ]
    events.extend(['migrate:mm_migrate_pages'])
    for test in test_registry.test_registry:
        if not tests_to_run or test(target).__class__.__name__ in tests_to_run:
            t = test(target, time=time)
            t.run_event(target, events, test_results)

    res_files = []
    res_files.append(test_results.store('Res1'))
    res_files.append(test_results.store('Res2'))

    create_report(res_files, 'Report', 'Test Run')
def run_tests(test_name, target, tests_to_run, iter=0):
    test_results = Results(target)

    time = 60
    event = []
    for test in test_registry.test_registry:
        if not tests_to_run or test(target).__class__.__name__ in tests_to_run:
            t = test(target, time=time)
            t.run(target, test_results)

    return test_results.store(test_name, iteration=iter)
def run_single_test(result_name, test_name, target, res_files, iter=1):
    test_results = Results(target)

    test_time = 60
    event = []
    for test in test_registry.test_registry:
        if test(target).__class__.__name__ == test_name:
            for i in range(0, iter):
                t = test(target, time=test_time)
                time.sleep(1)
                t.run(target, test_results)

    f = test_results.store(result_name + '-' + test_name, iteration=0)
    res_files.append(f)
Exemple #6
0
def run_tests(test_name, target, tests_to_run):
    test_results = Results(target)
    sched_features = target.execute(
        'cat /sys/kernel/debug/sched_features | grep WA_ ', as_root=True)
    for f in sched_features.split(" "):
        if "WA_" in f:
            test_results.log(f)

    for test in test_registry.test_registry:
        if not tests_to_run or test(target).__class__.__name__ in tests_to_run:
            test(target).run_event(target, 'sched:sched_migrate_task',
                                   test_results)

    return test_results.store(test_name)
Exemple #7
0
def main():
    target = Target()
    test_results = Results(target)

    for test in test_registry.test_registry:
        t = test(target, time=60)
        print(t.command)
def ablation_study(args):
    '''
    Function that performs the ablation study
    :param args:  Input arguments
    :return:
    '''
    features = np.arange(1, 19)
    folder = os.path.join(
        args.output,
        args.exp_name + '_' + datetime.datetime.now().strftime("%m_%d"),
        datetime.datetime.now().strftime("%H_%M"))
    if not os.path.exists(folder):
        os.makedirs(folder)
    for j in range(1, 9):
        exp_name = args.exp_name + str(j)
        subfolder = os.path.join(folder, 'feature_' + str(j))
        file_result_patients = os.path.join(subfolder, 'res_pat.csv')
        file_result_segments = os.path.join(subfolder, 'res_seg.csv')
        #filename = subfolder + "weights.hdf5"
        model_file = os.path.join(subfolder, "model.json")
        if not os.path.exists(subfolder):
            os.makedirs(subfolder)

        feature_delete = j
        feature_delete_r = j + 9
        features_i = np.delete(features, [feature_delete, feature_delete_r])
        val_results = Results(file_result_segments, file_result_patients)
        #datas = Datas(args.input_data, 1,  100, features=features_i)
        #datas.load(norm=None)
        datas = Data(args.input_data, 1, 100, pk_level=False)
        for i in range(0, 10):
            lr = 0.001
            print('fold', str(i))
            log_filename = os.path.join(subfolder,
                                        "training_" + str(i) + ".csv")
            w_filename = os.path.join(subfolder, "weights_" + str(i) + ".hdf5")
            datas.separate_fold(i)
            model = multiple_cnn1D(datas.X_data.shape[2])
            model_json = model.to_json()
            with open(model_file, "w") as json_file:
                json_file.write(model_json)

            model = train(model, datas, lr, log_filename, w_filename)

            print('Validation !!!!!!!')
            val_results.validate_patient(model, datas.X_val, datas.y_val,
                                         datas.count_val)
Exemple #9
0
def main():
    data = get_data()
    amending, not_amending = split_data(data)
    data = remove_titles(data)
    test, train, validation = split_test_train_validation(set(data.keys()))

    labels = {k: 1 if k in amending else 0 for k in data.keys()}
    full_text_documents = data
    tenth_of_text_documents = {k: get_random_lines(v, 10, percentage=True) for k, v in data.items()}
    ten_lines_documents = {k: get_random_lines(v, 10) for k, v in data.items()}
    single_line_documents = {k: get_random_lines(v, 1) for k, v in data.items()}

    r = Results()

    svm_classify(full_text_documents, tenth_of_text_documents, ten_lines_documents, single_line_documents, labels, r, test, train, validation)
    fasttext_classify(full_text_documents, tenth_of_text_documents, ten_lines_documents, single_line_documents, labels, r, test, train, validation)
    flair_classify(full_text_documents, tenth_of_text_documents, ten_lines_documents, single_line_documents, labels, r, test, train, validation)

    r.save('results.json')
Exemple #10
0
def train_model(environment,
                agent,
                iterations=10000,
                goal_reward=200,
                verbose=False,
                seed=0):
    environment.environment.seed(seed)
    np.random.seed(seed)
    random.seed(seed)

    result = Results()

    for i in range(iterations):

        if verbose and (i % 200) == 0 and i > 1:
            result.print_summary()

        episode_reward = run_episode(agent, environment)

        hit_goal = episode_reward >= goal_reward
        result.add_result(episode_reward, hit_goal)

        if hit_goal:
            print(
                f"Hit goal in {i} iterations with a reward of {episode_reward}!"
            )

    if verbose:
        input("Finished training, press here to continue...")
        for _ in range(5):
            episode_reward = run_episode(agent, environment, render=True)
            result.add_result(episode_reward)
        result.print_summary()

    agent.close()
    return result
 def showResults(self, queryResults, sql, values):
     Results(self, queryResults, sql, values).focus()
 def testCanBeInitialisedWithResults(self):
     results = [(34234, 32084)]
     self.results = Results(self.run, results)
     self.assertEqual(results, self.results.results)
 def setUp(self):
     self.run = MockRun()
     self.results = Results(self.run)
 def setUp(self):
     param = Parameters(1)
     param.p = np.logspace(-6, -4, num=20)
     figs_dir = "test_figs/"
     self.res = Results(param, figs_dir)
class ResultsTest(unittest.TestCase):
    def setUp(self):
        param = Parameters(1)
        param.p = np.logspace(-6, -4, num=20)
        figs_dir = "test_figs/"
        self.res = Results(param, figs_dir)

    def test_get_param(self):
        par = self.res.get_param()
        self.assertEqual(20, len(par.p))

    def test_get_figs_dir(self):
        f_dir = self.res.get_figs_dir()
        self.assertEqual("test_figs/", f_dir)

    def test_get_per_list(self):
        per = self.res.get_per_list()
        self.assertEqual(0, len(per))

    def test_get_per_conf(self):
        per_conf = self.res.get_per_conf()
        self.assertEqual(0, len(per_conf))

    def test_get_thrpt_list(self):
        thrpt = self.res.get_thrpt_list()
        self.assertEqual(0, len(thrpt))

    def test_get_thrpt_conf(self):
        thrpt_conf = self.res.get_thrpt_conf()
        self.assertEqual(0, len(thrpt_conf))

    def test_store_res_plot(self):
        per_tpl = (1.0e-05, 1.0e-06)
        thrpt_tpl = (50, 0.5)

        # Add len.p PER and Throughput results
        len_p = len(self.res.get_param().p)
        for k in range(0, len_p):
            self.res.store_res(per_tpl, thrpt_tpl)

        # Check PER length
        per = self.res.get_per_list()
        self.assertEqual(len_p, len(per))

        # Check PER confidence length
        per_conf = self.res.get_per_conf()
        self.assertEqual(len_p, len(per_conf))

        # Check thrpt length
        thrpt = self.res.get_thrpt_list()
        self.assertEqual(len_p, len(thrpt))

        # Check thrpt_conf lenth
        thrpt_conf = self.res.get_thrpt_conf()
        self.assertEqual(len_p, len(thrpt_conf))

        # Plot
        theo_per = 1.0e-05 * np.ones([
            len_p,
        ])
        theo_thrpt = 50 * np.ones([
            len_p,
        ])
        self.res.plot(theo_per, theo_thrpt)
Exemple #16
0

if __name__ == "__main__":
    """
	 configuration: all the config data
	 attacks: configure attacks from config data
	 hashcat: calls to hashcat individual attacks
	 results: generates a report with the results
	"""
    os.system("")  # enable command colors
    print(Color.cyan("\n...AutoCrackeo..."))

    arguments = get_arguments()
    conf = Configuration(arguments.hash_file, arguments.hash_type,
                         arguments.config_file, arguments.extra_params)
    results = Results(conf.static_values)
    hashcat = Hashcat(conf.static_values, results)
    attacks = Attacks(hashcat)

    if arguments.config_file:  # if -c/--config
        """
		 Execute a specific selection of hashcat attacks
		 previously defined on the configuration json file
		 This will be updated gradually as the efficiency of the attacks are measured
		"""
        # print start datetime
        start_date = datetime.now()
        print("\nStart date: " + Results.datetime_to_string(start_date) + "\n")
        """
		 Set a SIGINT signal handler to securely skip all the attacks if the user wants to
		"""