def tester_char(uri): img = cv2.imread(uri) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dataString_middle="" dataString_lower="" dataString_upper="" lowerZoneLabels = fileIO.read_label_file('learner/lowerZoneLabels') middleZoneLabels = fileIO.read_label_file('learner/middleZoneLabels') upperZoneLabels = fileIO.read_label_file('learner/upperZoneLabels') character = gray[0:64, 0:128] character = normalize.get_mask(character, 5) xMin, xMax, yMin, yMax= locate_character.char_location(character) # print xMin, xMax, yMin, yMax classifier_middle = pickle.load(open('learner/ANN_middle')) classifier_lower = pickle.load(open('learner/ANN_lower')) classifier_upper = pickle.load(open('learner/ANN_upper')) dataArray_middle = feature_mapper.middle(character, 21, 43, xMin, xMax) dataArray_middle.append('m1') # print dataArray_middle dataArray_lower = feature_mapper.lower(character, 42, 64, xMin, xMax) dataArray_lower.append('l0') # print dataArray_lower dataArray_upper = feature_mapper.upper(character, 0, 22, xMin, xMax) dataArray_upper.append('u0') # MiddleZoneClasss = classifier_middle(dataArray_middle, Orange.classification.Classifier.GetBoth) MiddleZoneProb = classifier_middle(dataArray_middle, Orange.classification.Classifier.GetProbabilities) UpperZoneProb = classifier_upper(dataArray_upper, Orange.classification.Classifier.GetProbabilities) LowerZoneProb = classifier_lower(dataArray_lower, Orange.classification.Classifier.GetProbabilities) MiddleZoneClass=(classifier_middle(dataArray_middle, Orange.classification.Classifier.GetBoth)) UpperZoneClass=(classifier_upper(dataArray_upper, Orange.classification.Classifier.GetBoth)) LowerZoneClass=(classifier_lower(dataArray_lower, Orange.classification.Classifier.GetBoth)) char, lower, middle, upper = prob_match.probability_match(lower=[LowerZoneProb,lowerZoneLabels], middle=[MiddleZoneProb, middleZoneLabels], upper=[UpperZoneProb,upperZoneLabels]) # char_mapper.char_map() print char+" "+lower+" "+middle+" "+upper
def classify(img): lowerZoneLabels = fileIO.read_label_file('learner/lowerZoneLabels') middleZoneLabels = fileIO.read_label_file('learner/middleZoneLabels') upperZoneLabels = fileIO.read_label_file('learner/upperZoneLabels') index = 0 #print img # for i in range(1, 3) if img is None: # print "None" return "" if img.any() == np.array([0]).all(): # print "space" return " " else: #im = np.array(img * 255, dtype = np.uint8) #gray = np.array(img * 255, dtype = np.uint8) dataString_middle = "" dataString_lower = "" dataString_upper = "" character = img # print character character = normalize.get_mask(character, 5) xMin, xMax, yMin, yMax = locate_character.char_location(character) # print xMin, xMax, yMin, yMax dataArray_middle = feature_mapper.middle(character, 21, 43, xMin, xMax) dataArray_middle.append('m1') # print dataArray_middle dataArray_lower = feature_mapper.lower(character, 42, 64, xMin, xMax) dataArray_lower.append('l0') # print dataArray_lower dataArray_upper = feature_mapper.upper(character, 0, 22, xMin, xMax) dataArray_upper.append('u0') # for i in range(1, 3): # char1="" # char2="" # char3="" MiddleZoneProb = classifier_middle( dataArray_middle, Orange.classification.Classifier.GetProbabilities) UpperZoneProb = classifier_upper( dataArray_upper, Orange.classification.Classifier.GetProbabilities) LowerZoneProb = classifier_lower( dataArray_lower, Orange.classification.Classifier.GetProbabilities) # MiddleZoneClass=(classifier_middle(dataArray_middle, Orange.classification.Classifier.GetBoth)) # UpperZoneClass=(classifier_upper(dataArray_upper, Orange.classification.Classifier.GetBoth)) # LowerZoneClass=(classifier_lower(dataArray_lower, Orange.classification.Classifier.GetBoth)) ############################################### if classifier_lower(dataArray_lower, Orange.classification.Classifier.GetValue) == 'l0': for i in range(0, len(lowerZoneLabels)): lowerZoneLabels[i] = 'l0' for i in xrange(0, len(LowerZoneProb)): LowerZoneProb[i] = 1 if classifier_upper(dataArray_upper, Orange.classification.Classifier.GetValue) == 'u0': for i in range(0, len(upperZoneLabels)): upperZoneLabels[i] = 'u0' for i in xrange(0, len(UpperZoneProb)): UpperZoneProb[i] = 1 predicted_char, lower, middle, upper = prob_match.probability_match( lower=[LowerZoneProb, lowerZoneLabels], middle=[MiddleZoneProb, middleZoneLabels], upper=[UpperZoneProb, upperZoneLabels]) # char_mapper.char_map() # print char+" "+lower+" "+middle+" "+upper return predicted_char
def validator_char(start, end): # lowerZoneLabels, middleZoneLabels, upperZoneLabels, classifier_middle, classifier_lower, classifier_upper=loadfile() img = cv2.imread(os.path.join(package_directory, 'data/chars - Copy.jpg')) iMax = 109 # iMax=5 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) index = 0 dataString_middle = "" dataString_lower = "" dataString_upper = "" char_matrix = {} char_time_matrix = {} lowerZoneLabels = fileIO.read_label_file('learner/lowerZoneLabels') middleZoneLabels = fileIO.read_label_file('learner/middleZoneLabels') upperZoneLabels = fileIO.read_label_file('learner/upperZoneLabels') classifier_middle = pickle.load( open(os.path.join(package_directory, 'learner/ANN_middle'))) classifier_lower = pickle.load( open(os.path.join(package_directory, 'learner/ANN_lower'))) classifier_upper = pickle.load( open(os.path.join(package_directory, 'learner/ANN_upper'))) for j in range(start, end): for i in range(1, iMax): time_start = time.time() character = gray[64 * (j - 1):64 * j, 128 * (i - 1):128 * i] character = normalize.get_mask(character, 5) xMin, xMax, yMin, yMax = locate_character.char_location(character) # cv2.imshow("sd",character) # cv2.waitKey(0) dataArray_middle = feature_mapper.middle(character, 21, 43, xMin, xMax) dataArray_middle.append('m1') # print dataArray_middle dataArray_lower = feature_mapper.lower(character, 42, 64, xMin, xMax) dataArray_lower.append('l0') dataArray_upper = feature_mapper.upper(character, 0, 22, xMin, xMax) dataArray_upper.append('u0') # MiddleZoneClasss = classifier_middle(dataArray_middle, Orange.classification.Classifier.GetBoth) MiddleZoneProb = classifier_middle( dataArray_middle, Orange.classification.Classifier.GetProbabilities) UpperZoneProb = classifier_upper( dataArray_upper, Orange.classification.Classifier.GetProbabilities) LowerZoneProb = classifier_lower( dataArray_lower, Orange.classification.Classifier.GetProbabilities) MiddleZoneClass = (classifier_middle( dataArray_middle, Orange.classification.Classifier.GetBoth)) UpperZoneClass = (classifier_upper( dataArray_upper, Orange.classification.Classifier.GetBoth)) LowerZoneClass = (classifier_lower( dataArray_lower, Orange.classification.Classifier.GetBoth)) # print MiddleZoneClass # char1=char_mapper.char_map(LowerZoneClass, MiddleZoneClass, UpperZoneClass) # print char1 predicted_char, lower, middle, upper = prob_match.probability_match( lower=[LowerZoneProb, lowerZoneLabels], middle=[MiddleZoneProb, middleZoneLabels], upper=[UpperZoneProb, upperZoneLabels]) # char_mapper.char_map() input_char = validate_mapper.char_map(i) time_end = time.time() if input_char is not None: print str(i) + "####################" print str( input_char ) + " : " + predicted_char + " " + lower + " " + middle + " " + upper + " time:" + str( time_end - time_start) # char_matrix[input_char]=predicted_cha # #fdfdr if input_char is not None: char_matrix.setdefault(input_char, []).append(predicted_char) char_time_matrix.setdefault(input_char, []).append(time_end - time_start) performance(char_matrix, char_time_matrix)
def validator_char(start, end): # lowerZoneLabels, middleZoneLabels, upperZoneLabels, classifier_middle, classifier_lower, classifier_upper=loadfile() img = cv2.imread('C:/Users/Naleen/PycharmProjects/CharReco2/data/chars - Copy.jpg') iMax = 109 # iMax=5 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dataString_middle="" dataString_lower="" dataString_upper="" char_matrix = {} char_time_matrix = {} lowerZoneLabels = fileIO.read_label_file('learner/lowerZoneLabels') middleZoneLabels = fileIO.read_label_file('learner/middleZoneLabels') upperZoneLabels = fileIO.read_label_file('learner/upperZoneLabels') # classifier_middle = pickle.load(open('learner/ANN_middle')) # classifier_lower = pickle.load(open('learner/ANN_lower')) # classifier_upper = pickle.load(open('learner/ANN_upper')) classifier_middle = pickle.load(open(os.path.join(package_directory, 'learner/ANN_middle'))) classifier_lower = pickle.load(open(os.path.join(package_directory, 'learner/ANN_lower'))) classifier_upper = pickle.load(open(os.path.join(package_directory, 'learner/ANN_upper'))) for j in range (start, end): for i in range (1, iMax): time_start=time.time() character = gray[64*(j-1):64*j, 128*(i-1):128*i] character = normalize.get_mask(character, 5) xMin, xMax, yMin, yMax= locate_character.char_location(character) # cv2.imshow("sd",character) # cv2.waitKey(0) dataArray_middle = feature_mapper.middle(character, 21, 43, xMin, xMax) dataArray_middle.append('m1') # print dataArray_middle dataArray_lower = feature_mapper.lower(character, 42, 64, xMin, xMax) dataArray_lower.append('l0') dataArray_upper = feature_mapper.upper(character, 0, 22, xMin, xMax) dataArray_upper.append('u0') # MiddleZoneClasss = classifier_middle(dataArray_middle, Orange.classification.Classifier.GetBoth) MiddleZoneProb = classifier_middle(dataArray_middle, Orange.classification.Classifier.GetProbabilities) UpperZoneProb = classifier_upper(dataArray_upper, Orange.classification.Classifier.GetProbabilities) LowerZoneProb = classifier_lower(dataArray_lower, Orange.classification.Classifier.GetProbabilities) MiddleZoneClass=(classifier_middle(dataArray_middle, Orange.classification.Classifier.GetBoth)) UpperZoneClass=(classifier_upper(dataArray_upper, Orange.classification.Classifier.GetBoth)) LowerZoneClass=(classifier_lower(dataArray_lower, Orange.classification.Classifier.GetBoth)) # print MiddleZoneClass # char1=char_mapper.char_map(LowerZoneClass, MiddleZoneClass, UpperZoneClass) # print char1 predicted_char, lower, middle, upper = prob_match.probability_match(lower=[LowerZoneProb,lowerZoneLabels], middle=[MiddleZoneProb, middleZoneLabels], upper=[UpperZoneProb,upperZoneLabels]) # char_mapper.char_map() input_char= validate_mapper.char_map(i) time_end=time.time() if input_char is not None: print str(i)+ "####################" print str(input_char)+" : "+predicted_char+" "+lower+" "+middle+" "+upper+" time:"+str(time_end-time_start) # char_matrix[input_char]=predicted_cha # #fdfdr if input_char is not None: char_matrix.setdefault(input_char, []).append(predicted_char) char_time_matrix.setdefault(input_char, []).append(time_end-time_start) performance(char_matrix, char_time_matrix)