else: rank = 0 device_num = 1 mindrecord_file = args.dataset_path if not os.path.exists(mindrecord_file): print("dataset file {} not exists, please check!".format( mindrecord_file)) raise ValueError(mindrecord_file) dataset = create_gru_dataset(epoch_count=config.num_epochs, batch_size=config.batch_size, dataset_path=mindrecord_file, rank_size=device_num, rank_id=rank) dataset_size = dataset.get_dataset_size() print("dataset size is {}".format(dataset_size)) network = Seq2Seq(config) network = GRUWithLossCell(network) lr = dynamic_lr(config, dataset_size) opt = Adam(network.trainable_params(), learning_rate=lr) scale_manager = DynamicLossScaleManager( init_loss_scale=config.init_loss_scale_value, scale_factor=config.scale_factor, scale_window=config.scale_window) update_cell = scale_manager.get_update_cell() netwithgrads = GRUTrainOneStepWithLossScaleCell(network, opt, update_cell) time_cb = TimeMonitor(data_size=dataset_size) loss_cb = LossCallBack(rank_id=rank) cb = [time_cb, loss_cb] #Save Checkpoint if config.save_checkpoint:
parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format.") parser.add_argument('--ckpt_file', type=str, required=True, help='ckpt file path') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, reserve_class_name_in_scope=False, \ device_id=args.device_id, save_graphs=False) if __name__ == "__main__": network = Seq2Seq(config, is_training=False) network = GRUInferCell(network) network.set_train(False) if args.ckpt_file != "": parameter_dict = load_checkpoint(args.ckpt_file) load_param_into_net(network, parameter_dict) source_ids = Tensor( np.random.uniform(0.0, 1e5, size=[config.eval_batch_size, config.max_length]).astype(np.int32)) target_ids = Tensor( np.random.uniform(0.0, 1e5, size=[config.eval_batch_size,
default='', help='checkpoint path.') args = parser.parse_args() context.set_context( mode=context.GRAPH_MODE, #PYNATIVE_MODE,#GRAPH_MODE, save_graphs=False, device_target='Ascend') rank = 0 device_num = 1 ds_eval = create_dataset(args.dataset_path, cfg.eval_batch_size, is_training=False) network = Seq2Seq(cfg, is_train=False) network = InferCell(network, cfg) network.set_train(False) parameter_dict = load_checkpoint(args.checkpoint_path) load_param_into_net(network, parameter_dict) model = Model(network) with open(os.path.join(args.dataset_path, "en_vocab.txt"), 'r', encoding='utf-8') as f: data = f.read() en_vocab = list(data.split('\n')) with open(os.path.join(args.dataset_path, "ch_vocab.txt"), 'r', encoding='utf-8') as f:
type=str, default='./preprocess', help='dataset path.') parser.add_argument('--ckpt_save_path', type=str, default='./', help='checkpoint save path.') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target='Ascend') ds_train = create_dataset(args.dataset_path, cfg.batch_size) network = Seq2Seq(cfg) network = WithLossCell(network, cfg) optimizer = nn.Adam(network.trainable_params(), learning_rate=cfg.learning_rate, beta1=0.9, beta2=0.98) model = Model(network, optimizer=optimizer) loss_cb = LossMonitor() config_ck = CheckpointConfig( save_checkpoint_steps=cfg.save_checkpoint_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix="gru", directory=args.ckpt_save_path, config=config_ck) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
def run_gru_eval(): """ Transformer evaluation. """ parser = argparse.ArgumentParser(description='GRU eval') parser.add_argument( "--device_target", type=str, default="Ascend", help="device where the code will be implemented, default is Ascend") parser.add_argument('--device_id', type=int, default=0, help='device id of GPU or Ascend, default is 0') parser.add_argument('--device_num', type=int, default=1, help='Use device nums, default is 1') parser.add_argument('--ckpt_file', type=str, default="", help='ckpt file path') parser.add_argument("--dataset_path", type=str, default="", help="Dataset path, default: f`sns.") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, reserve_class_name_in_scope=False, \ device_id=args.device_id, save_graphs=False) dataset = create_gru_dataset(epoch_count=config.num_epochs, batch_size=config.eval_batch_size, \ dataset_path=args.dataset_path, rank_size=args.device_num, rank_id=0, do_shuffle=False, is_training=False) dataset_size = dataset.get_dataset_size() print("dataset size is {}".format(dataset_size)) network = Seq2Seq(config, is_training=False) network = GRUInferCell(network) network.set_train(False) if args.ckpt_file != "": parameter_dict = load_checkpoint(args.ckpt_file) load_param_into_net(network, parameter_dict) model = Model(network) predictions = [] source_sents = [] target_sents = [] eval_text_len = 0 for batch in dataset.create_dict_iterator(output_numpy=True, num_epochs=1): source_sents.append(batch["source_ids"]) target_sents.append(batch["target_ids"]) source_ids = Tensor(batch["source_ids"], mstype.int32) target_ids = Tensor(batch["target_ids"], mstype.int32) predicted_ids = model.predict(source_ids, target_ids) print("predicts is ", predicted_ids.asnumpy()) print("target_ids is ", target_ids) predictions.append(predicted_ids.asnumpy()) eval_text_len = eval_text_len + 1 f_output = open(config.output_file, 'w') f_target = open(config.target_file, "w") for batch_out, true_sentence in zip(predictions, target_sents): for i in range(config.eval_batch_size): target_ids = [str(x) for x in true_sentence[i].tolist()] f_target.write(" ".join(target_ids) + "\n") token_ids = [str(x) for x in batch_out[i].tolist()] f_output.write(" ".join(token_ids) + "\n") f_output.close() f_target.close()