Exemple #1
0
  def _maybe_calibrate_size(self, layers, out_filters, is_training):
    """Makes sure layers[0] and layers[1] have the same shapes."""

    hw = [self._get_HW(layer) for layer in layers]
    c = [self._get_C(layer) for layer in layers]

    with tf.variable_scope("calibrate"):
      x = layers[0]
      if hw[0] != hw[1]:
        assert hw[0] == 2 * hw[1]
        with tf.variable_scope("pool_x"):
          #x = tf.nn.relu(x)
          x = self._factorized_reduction(x, out_filters, 2, is_training)
      elif c[0] != out_filters:
        with tf.variable_scope("pool_x"):
          w = create_weight("w", [1, 1, c[0], out_filters])
          #x = tf.nn.relu(x)
          x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
          x = batch_norm(x, is_training, data_format=self.data_format)

      y = layers[1]
      if c[1] != out_filters:
        with tf.variable_scope("pool_y"):
          w = create_weight("w", [1, 1, c[1], out_filters])
          #y = tf.nn.relu(y)
          y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
          y = batch_norm(y, is_training, data_format=self.data_format)
    return [x, y]
Exemple #2
0
  def _enas_cell(self, x, curr_cell, prev_cell, op_id, out_filters):
    """Performs an enas operation specified by op_id."""

    num_possible_inputs = curr_cell + 1

    with tf.variable_scope("avg_pool"):
      avg_pool = tf.layers.average_pooling2d(
        x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
      avg_pool_c = self._get_C(avg_pool)
      if avg_pool_c != out_filters:
        with tf.variable_scope("conv"):
          w = create_weight(
            "w", [num_possible_inputs, avg_pool_c * out_filters])
          w = w[prev_cell]
          w = tf.reshape(w, [1, 1, avg_pool_c, out_filters])
          #avg_pool = tf.nn.relu(avg_pool)
          avg_pool = tf.nn.conv2d(avg_pool, w, strides=[1, 1, 1, 1],
                                  padding="SAME", data_format=self.data_format)
          avg_pool = batch_norm(avg_pool, is_training=True,
                                data_format=self.data_format)

    with tf.variable_scope("max_pool"):
      max_pool = tf.layers.max_pooling2d(
        x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
      max_pool_c = self._get_C(max_pool)
      if max_pool_c != out_filters:
        with tf.variable_scope("conv"):
          w = create_weight(
            "w", [num_possible_inputs, max_pool_c * out_filters])
          w = w[prev_cell]
          w = tf.reshape(w, [1, 1, max_pool_c, out_filters])
          #max_pool = tf.nn.relu(max_pool)
          max_pool = tf.nn.conv2d(max_pool, w, strides=[1, 1, 1, 1],
                                  padding="SAME", data_format=self.data_format)
          max_pool = batch_norm(max_pool, is_training=True,
                                data_format=self.data_format)

    x_c = self._get_C(x)
    if x_c != out_filters:
      with tf.variable_scope("x_conv"):
        w = create_weight("w", [num_possible_inputs, x_c * out_filters])
        w = w[prev_cell]
        w = tf.reshape(w, [1, 1, x_c, out_filters])
        #x = tf.nn.relu(x)
        x = tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding="SAME",
                         data_format=self.data_format)
        x = batch_norm(x, is_training=True, data_format=self.data_format)

    out = [
      self._enas_conv(x, curr_cell, prev_cell, 3, out_filters),
      self._enas_conv(x, curr_cell, prev_cell, 5, out_filters),
      avg_pool,
      max_pool,
      x,
    ]

    out = tf.stack(out, axis=0)
    out = out[op_id, :, :, :, :]
    return out
Exemple #3
0
  def _factorized_reduction(self, x, out_filters, stride, is_training):
    """Reduces the shape of x without information loss due to striding."""
    assert out_filters % 2 == 0, (
        "Need even number of filters when using this factorized reduction.")
    if stride == 1:
      with tf.variable_scope("path_conv"):
        inp_c = self._get_C(x)
        w = create_weight("w", [1, 1, inp_c, out_filters])
        x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                         data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
        return x

    stride_spec = self._get_strides(stride)
    # Skip path 1
    path1 = tf.nn.avg_pool(
        x, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
    with tf.variable_scope("path1_conv"):
      inp_c = self._get_C(path1)
      w = create_weight("w", [1, 1, inp_c, out_filters // 2])
      path1 = tf.nn.conv2d(path1, w, [1, 1, 1, 1], "VALID",
                           data_format=self.data_format)
  
    # Skip path 2
    # First pad with 0"s on the right and bottom, then shift the filter to
    # include those 0"s that were added.
    if self.data_format == "NHWC":
      pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
      path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
      concat_axis = 3
    else:
      pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
      path2 = tf.pad(x, pad_arr)[:, :, 1:, 1:]
      concat_axis = 1
  
    path2 = tf.nn.avg_pool(
        path2, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
    with tf.variable_scope("path2_conv"):
      inp_c = self._get_C(path2)
      w = create_weight("w", [1, 1, inp_c, out_filters // 2])
      path2 = tf.nn.conv2d(path2, w, [1, 1, 1, 1], "VALID",
                           data_format=self.data_format)
  
    # Concat and apply BN
    final_path = tf.concat(values=[path1, path2], axis=concat_axis)
    final_path = batch_norm(final_path, is_training,
                            data_format=self.data_format)

    return final_path
Exemple #4
0
  def _fixed_conv(self, x, f_size, out_filters, stride, is_training,
                  stack_convs=2):
    """Apply fixed convolution.

    Args:
      stacked_convs: number of separable convs to apply.
    """

    for conv_id in range(stack_convs):
      inp_c = self._get_C(x)
      if conv_id == 0:
        strides = self._get_strides(stride)
      else:
        strides = [1, 1, 1, 1]

      with tf.variable_scope("sep_conv_{}".format(conv_id)):
        w_depthwise = create_weight("w_depth", [f_size, f_size, inp_c, 1])
        w_pointwise = create_weight("w_point", [1, 1, inp_c, out_filters])
        #x = tf.nn.relu(x)
        x = tf.nn.separable_conv2d(
          x,
          depthwise_filter=w_depthwise,
          pointwise_filter=w_pointwise,
          strides=strides, padding="SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)

    return x
Exemple #5
0
    def _maybe_calibrate_size(self, layers, out_filters, is_training):
        """Makes sure layers[0] and layers[1] have the same shapes."""

        #hw = [self._get_HW(layer) for layer in layers]
        c = [self._get_C(layer) for layer in layers]
        print(c)

        with tf.variable_scope("calibrate"):
            x = layers[0]
            if c[0] != out_filters:
                with tf.variable_scope("shuffle_x"):
                    x = self._upsampler(x)
            y = layers[1]
            if c[1] != out_filters:
                with tf.variable_scope("pool_y"):
                    w = create_weight("w", [1, 1, c[1], out_filters])
                    #y = tf.nn.relu(y)
                    y = tf.nn.conv2d(y,
                                     w, [1, 1, 1, 1],
                                     "SAME",
                                     data_format=self.data_format)
                    y = batch_norm(y,
                                   is_training,
                                   data_format=self.data_format)
        return [x, y]
Exemple #6
0
  def _enas_layer(self, layer_id, prev_layers, arc, out_filters):
    """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
    """

    assert len(prev_layers) == 2, "need exactly 2 inputs"
    layers = [prev_layers[0], prev_layers[1]]
    layers = self._maybe_calibrate_size(layers, out_filters, is_training=True)
    used = []
    for cell_id in range(self.num_cells):
      prev_layers = tf.stack(layers, axis=0)
      with tf.variable_scope("cell_{0}".format(cell_id)):
        with tf.variable_scope("x"):
          x_id = arc[4 * cell_id]
          x_op = arc[4 * cell_id + 1]
          x = prev_layers[x_id, :, :, :, :]
          x = self._enas_cell(x, cell_id, x_id, x_op, out_filters)
          x_used = tf.one_hot(x_id, depth=self.num_cells + 2, dtype=tf.int32)

        with tf.variable_scope("y"):
          y_id = arc[4 * cell_id + 2]
          y_op = arc[4 * cell_id + 3]
          y = prev_layers[y_id, :, :, :, :]
          y = self._enas_cell(y, cell_id, y_id, y_op, out_filters)
          y_used = tf.one_hot(y_id, depth=self.num_cells + 2, dtype=tf.int32)

        out = x + y
        used.extend([x_used, y_used])
        layers.append(out)

    used = tf.add_n(used)
    indices = tf.where(tf.equal(used, 0))
    indices = tf.to_int32(indices)
    indices = tf.reshape(indices, [-1])
    num_outs = tf.size(indices)
    out = tf.stack(layers, axis=0)
    out = tf.gather(out, indices, axis=0)

    inp = prev_layers[0]
    if self.data_format == "NHWC":
      N = tf.shape(inp)[0]
      H = tf.shape(inp)[1]
      W = tf.shape(inp)[2]
      C = tf.shape(inp)[3]
      out = tf.transpose(out, [1, 2, 3, 0, 4])
      out = tf.reshape(out, [N, H, W, num_outs * out_filters])
    elif self.data_format == "NCHW":
      N = tf.shape(inp)[0]
      C = tf.shape(inp)[1]
      H = tf.shape(inp)[2]
      W = tf.shape(inp)[3]
      out = tf.transpose(out, [1, 0, 2, 3, 4])
      out = tf.reshape(out, [N, num_outs * out_filters, H, W])
    else:
      raise ValueError("Unknown data_format '{0}'".format(self.data_format))

    with tf.variable_scope("final_conv"):
      w = create_weight("w", [self.num_cells + 2, out_filters * out_filters])
      w = tf.gather(w, indices, axis=0)
      w = tf.reshape(w, [1, 1, num_outs * out_filters, out_filters])
      #out = tf.nn.relu(out)
      out = tf.nn.conv2d(out, w, strides=[1, 1, 1, 1], padding="SAME",
                         data_format=self.data_format)
      out = batch_norm(out, is_training=True, data_format=self.data_format)

    out = tf.reshape(out, tf.shape(prev_layers[0]))

    return out
Exemple #7
0
  def _fixed_layer(self, layer_id, prev_layers, arc, out_filters, stride,
                   is_training, normal_or_reduction_cell="normal"):
    """
    Args:
      prev_layers: cache of previous layers. for skip connections
      is_training: for batch_norm
    """

    assert len(prev_layers) == 2
    layers = [prev_layers[0], prev_layers[1]]
    layers = self._maybe_calibrate_size(layers, out_filters,
                                        is_training=is_training)

    with tf.variable_scope("layer_base"):
      x = layers[1]
      inp_c = self._get_C(x)
      w = create_weight("w", [1, 1, inp_c, out_filters])
      #x = tf.nn.relu(x)
      x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                       data_format=self.data_format)
      x = batch_norm(x, is_training, data_format=self.data_format)
      layers[1] = x

    used = np.zeros([self.num_cells + 2], dtype=np.int32)
    f_sizes = [3, 5]
    for cell_id in range(self.num_cells):
      with tf.variable_scope("cell_{}".format(cell_id)):
        x_id = arc[4 * cell_id]
        used[x_id] += 1
        x_op = arc[4 * cell_id + 1]
        x = layers[x_id]
        x_stride = stride if x_id in [0, 1] else 1
        with tf.variable_scope("x_conv"):
          if x_op in [0, 1]:
            f_size = f_sizes[x_op]
            x = self._fixed_conv(x, f_size, out_filters, x_stride, is_training)
          elif x_op in [2, 3]:
            inp_c = self._get_C(x)
            if x_op == 2:
              x = tf.layers.average_pooling2d(
                x, [3, 3], [x_stride, x_stride], "SAME",
                data_format=self.actual_data_format)
            else:
              x = tf.layers.max_pooling2d(
                x, [3, 3], [x_stride, x_stride], "SAME",
                data_format=self.actual_data_format)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              #x = tf.nn.relu(x)
              x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              x = batch_norm(x, is_training, data_format=self.data_format)
          else:
            inp_c = self._get_C(x)
            if x_stride > 1:
              assert x_stride == 2
              x = self._factorized_reduction(x, out_filters, 2, is_training)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              #x = tf.nn.relu(x)
              x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
              x = batch_norm(x, is_training, data_format=self.data_format)
          if (x_op in [0, 1, 2, 3] and
              self.drop_path_keep_prob is not None and
              is_training):
            x = self._apply_drop_path(x, layer_id)

        y_id = arc[4 * cell_id + 2]
        used[y_id] += 1
        y_op = arc[4 * cell_id + 3]
        y = layers[y_id]
        y_stride = stride if y_id in [0, 1] else 1
        with tf.variable_scope("y_conv"):
          if y_op in [0, 1]:
            f_size = f_sizes[y_op]
            y = self._fixed_conv(y, f_size, out_filters, y_stride, is_training)
          elif y_op in [2, 3]:
            inp_c = self._get_C(y)
            if y_op == 2:
              y = tf.layers.average_pooling2d(
                y, [3, 3], [y_stride, y_stride], "SAME",
                data_format=self.actual_data_format)
            else:
              y = tf.layers.max_pooling2d(
                y, [3, 3], [y_stride, y_stride], "SAME",
                data_format=self.actual_data_format)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              #y = tf.nn.relu(y)
              y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              y = batch_norm(y, is_training, data_format=self.data_format)
          else:
            inp_c = self._get_C(y)
            if y_stride > 1:
              assert y_stride == 2
              y = self._factorized_reduction(y, out_filters, 2, is_training)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              #y = tf.nn.relu(y)
              y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              y = batch_norm(y, is_training, data_format=self.data_format)

          if (y_op in [0, 1, 2, 3] and
              self.drop_path_keep_prob is not None and
              is_training):
            y = self._apply_drop_path(y, layer_id)

        out = x + y
        layers.append(out)
    out = self._fixed_combine(layers, used, out_filters, is_training,
                              normal_or_reduction_cell)

    return out
Exemple #8
0
  def _model(self, x, is_training, reuse=False):
    """Compute the logits given the inputs."""

    if self.fixed_arc is None:
      is_training = True

    with tf.variable_scope(self.name, reuse=reuse):
      # the first two inputs
      with tf.variable_scope("stem_conv"):
        w = create_weight("w", [3, 3, 3, self.out_filters])
        x = tf.nn.conv2d(
          x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        #x = batch_norm(x, is_training, data_format=self.data_format)
      if self.data_format == "NHWC":
        split_axis = 3
      elif self.data_format == "NCHW":
        split_axis = 1
      else:
        raise ValueError("Unknown data_format '{0}'".format(self.data_format))
      layers = [x, x]
      stem_out = x

      # building layers in the micro space
      out_filters = self.out_filters
      for layer_id in range(self.num_layers + 2):
        with tf.variable_scope("layer_{0}".format(layer_id)):
          if layer_id not in self.pool_layers:
            if self.fixed_arc is None:
              x = self._enas_layer(
                layer_id, layers, self.normal_arc, out_filters)
            else:
              x = self._fixed_layer(
                layer_id, layers, self.normal_arc, out_filters, 1, is_training,
                normal_or_reduction_cell="normal")
          else:
            #out_filters *= 2
            if self.fixed_arc is None:
              #x = self._factorized_reduction(x, out_filters, 2, is_training)
              layers = [layers[-1], x]
              x = self._enas_layer(
                layer_id, layers, self.reduce_arc, out_filters)
            else:
              x = self._fixed_layer(
                layer_id, layers, self.reduce_arc, out_filters, 2, is_training,
                normal_or_reduction_cell="normal")
          print("Layer {0:>2d}: {1}".format(layer_id, x))
          layers = [layers[-1], x]

      with tf.variable_scope("global_conv"):
        w = create_weight("w", [3, 3, out_filters, out_filters])
        x = tf.nn.conv2d(
          x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
      x = x + stem_out

      with tf.variable_scope("upsample_1"):
        w = create_weight("w", [3, 3, out_filters, out_filters * 4])
        x = tf.nn.conv2d(
          x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        x = pixel_shuffler(x)

      with tf.variable_scope("upsample_2"):
        w = create_weight("w", [3, 3, out_filters, out_filters * 4])
        x = tf.nn.conv2d(
          x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        x = pixel_shuffler(x)

      with tf.variable_scope("output"):
        w = create_weight("w", [3, 3, out_filters, 3])
        x = tf.nn.conv2d(
          x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        # scale to [0, 255]
        #x = tf.clip_by_value(x * self.std + self.mean, 0, 255)
        #x = x * self.std + self.mean
    return x