Exemple #1
0
def create_model(num_classes=21, device=torch.device('cpu')):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    # pre_train_path = "./src/resnet50.pth"
    backbone = Backbone()
    model = SSD300(backbone=backbone, num_classes=num_classes)

    # https://ngc.nvidia.com/catalog/models -> search ssd -> download FP32
    pre_ssd_path = "./src/nvidia_ssdpyt_fp32.pt"
    pre_model_dict = torch.load(pre_ssd_path, map_location=device)
    pre_weights_dict = pre_model_dict["model"]

    # 删除类别预测器权重,注意,回归预测器的权重可以重用,因为不涉及num_classes
    del_conf_loc_dict = {}
    for k, v in pre_weights_dict.items():
        split_key = k.split(".")
        if "conf" in split_key:
            continue
        del_conf_loc_dict.update({k: v})

    missing_keys, unexpected_keys = model.load_state_dict(del_conf_loc_dict,
                                                          strict=False)
    if len(missing_keys) != 0 or len(unexpected_keys) != 0:
        print("missing_keys: ", missing_keys)
        print("unexpected_keys: ", unexpected_keys)

    return model
def create_model(num_classes=21, device=torch.device('cpu')):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    # pre_train_path = "./src/resnet50.pth"
    backbone = Backbone()
    model = SSD300(backbone=backbone, num_classes=num_classes)

    # # https://ngc.nvidia.com/catalog/models -> search ssd -> download FP32
    # pre_ssd_path = "./src/nvidia_ssdpyt_fp32_190826.pt"
    # if os.path.exists(pre_ssd_path) is False:
    #     raise FileNotFoundError("nvidia_ssdpyt_fp32.pt not find in {}".format(pre_ssd_path))
    # pre_model_dict = torch.load(pre_ssd_path, map_location=device)
    # pre_weights_dict = pre_model_dict["model"]
    #
    # # 删除类别预测器权重,注意,回归预测器的权重可以重用,因为不涉及num_classes
    # del_conf_loc_dict = {}
    # for k, v in pre_weights_dict.items():
    #     split_key = k.split(".")
    #     if "conf" in split_key:
    #         continue
    #     del_conf_loc_dict.update({k: v})
    #
    # missing_keys, unexpected_keys = model.load_state_dict(del_conf_loc_dict, strict=False)
    # if len(missing_keys) != 0 or len(unexpected_keys) != 0:
    #     print("missing_keys: ", missing_keys)
    #     print("unexpected_keys: ", unexpected_keys)

    return model
Exemple #3
0
def load_network(weights_path, device, num_classes):
    backbone = Backbone()
    model = SSD300(backbone=backbone, num_classes=num_classes)
    #net = create_model(num_classes=6)
    model.load_state_dict(
        torch.load(weights_path, map_location=device)["model"])
    return model
def create_model(num_classes, device=torch.device('cpu')):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    pre_train_path = "./src/resnet50.pth"
    backbone = Backbone(pretrain_path=pre_train_path)
    model = SSD300(backbone=backbone, num_classes=num_classes)

    pre_ssd_path = "./src/nvidia_ssdpyt_fp32.pt"
    pre_model_dict = torch.load(pre_ssd_path, map_location=device)
    pre_weights_dict = pre_model_dict["model"]

    # delete weights of prediction categories
    del_conf_loc_dict = {}
    for k, v in pre_weights_dict.items():
        split_key = k.split(".")
        if "conf" in split_key:
            continue
        del_conf_loc_dict.update({k: v})

    missing_keys, unexpected_keys = model.load_state_dict(del_conf_loc_dict,
                                                          strict=False)
    if len(missing_keys) != 0 or len(unexpected_keys) != 0:
        print("missing_keys: ", missing_keys)
        print("unexpected_keys: ", unexpected_keys)

    return model
def create_model(num_classes=21, device=torch.device('cpu')):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    pre_train_path = "./src/resnet50.pth"
    backbone = resnet50()
    model = SSD300(backbone=backbone,
                   num_classes=num_classes,
                   pretrain_path=pre_train_path)

    # load train weights
    train_weights = "./save_weights/model.pth"
    train_weights_dict = torch.load(train_weights,
                                    map_location=device)['model']

    model.load_state_dict(train_weights_dict, strict=False)
    model.to(device)
    # # https://ngc.nvidia.com/catalog/models -> search ssd -> download FP32
    # pre_ssd_path = "./src/nvidia_ssdpyt_fp32.pt"
    # pre_model_dict = torch.load(pre_ssd_path, map_location=device)
    # pre_weights_dict = pre_model_dict["model"]
    #
    # del_conf_loc_dict = {}
    # for k, v in pre_weights_dict.items():
    #     split_key = k.split(".")
    #     if "conf" in split_key:
    #         continue
    #     del_conf_loc_dict.update({k: v})
    #
    # missing_keys, unexpected_keys = model.load_state_dict(del_conf_loc_dict, strict=False)
    # if len(missing_keys) != 0 or len(unexpected_keys) != 0:
    #     print("missing_keys: ", missing_keys)
    #     print("unexpected_keys: ", unexpected_keys)

    return model
Exemple #6
0
    def __init__(self, device="cuda:1"):
        picfile = str(time.strftime("%Y%m%d"))
        self.todaypath = os.path.join('/workspace/nologopics', picfile)
        if not os.path.exists(self.todaypath):
            os.mkdir(self.todaypath)

        self.device = torch.device(device)
        # logo检测模型
        backbone = Backbone()
        self.ssdmodel = SSD300(backbone=backbone, num_classes=2)
        modelpath = './weights/ssd300-best.pth'
        weights_dict = torch.load(modelpath, map_location=device)
        self.ssdmodel.load_state_dict(weights_dict, strict=False)
        json_file = open('./pascal_voc_classes.json', 'r')
        class_dict = json.load(json_file)
        self.category_index = {v: k for k, v in class_dict.items()}
        self.data_transforms = transform.Compose([
            transform.Resize(),
            transform.ToTensor(),
            transform.Normalization()
        ])

        # 水印字体
        self.font = ImageFont.truetype("./src/msyh.TTF", 24, encoding="utf-8")

        # 爬虫网址
        self.spiderurl = {
            #clear_log
            2: {
                'url': 'http://adsoc.qknode.com/adagent/material/material?',
                'topic': ["清理", "日历", "天气"]
            },
            0: {
                'url': 'http://adsoc.qknode.com/adagent/material/center/rank?',
                'topic': ["清理", "日历", "天气", "教育"]
            },
            # 排行榜
            1: {
                'url': 'http://adsoc.qknode.com/adagent/material/material?',
                'topic': ["清理", "日历", "天气"]
            }

            # 素材洞察
        }

        # 推送地址
        self.finalurl = 'http://adsoc.qknode.com/adagent/material/center/push'

        # self.cnniqamodel = CNNIQAnet(ker_size=7, n_kers=50, n1_nodes=800, n2_nodes=800)
        # self.cnniqamodel.load_state_dict(torch.load('./weights/CNNIQA-LIVE.pth',map_location=device))
        if device != 'cpu':
            # self.cnniqamodel = self.cnniqamodel.to(self.device)
            # self.cnniqamodel.eval()
            self.ssdmodel = self.ssdmodel.to(self.device)
            self.ssdmodel.eval()
Exemple #7
0
def create_model(num_classes):
    backbone = Backbone()
    model = SSD300(backbone=backbone, num_classes=num_classes)

    return model