Exemple #1
0
def start_func(args):
  if args.train_method=="train_by_custom_net":
    train_script.train(args)
  elif args.train_method=="train_by_transfer_learning_using_resnet":
    train_by_transfer_learning_using_resnet.train(args)
  else:
    pass
Exemple #2
0
def start_func(args):
    if args.start_func_mode == "pre_visualize_data":
        visualize_data.visualize(args)
    elif args.train_method == "train_by_transfer_learning_using_resnet":
        train_by_transfer_learning_using_resnet.train(args)
    else:
        pass
Exemple #3
0
def start_train(args):
    if args.train_method == "train_by_custom_net":
        train_script.train(args)
    elif args.train_method == "train_by_transfer_learning_using_resnet":
        train_by_transfer_learning_using_resnet.train(args)
    elif args.train_method == "Scikit_Learn_SVM":
        train_by_Scikit_Learn_SVM.train(args)
    elif args.train_method == "xgboost":
        train_by_xgboost.train(args)
    elif args.train_method == "xgboost_resample":
        train_by_xgboost_resample.train(args)
    else:
        pass
  def test_utils_net_for_cgintrinsic_net(self):
    # ================================================================================
    # Arrange
    args=utils_create_argument.return_argument()

    # ================================================================================
    # Act
    netG=train_by_transfer_learning_using_resnet.train(args)
    # print('netG',type(netG))
    # <class 'prj_root.utils.utils_net_for_cgintrinsic_net.MultiUnetGenerator'>

    # ================================================================================
    # Assert
    # self.assertEqual(3,netG)
    self.assertIsInstance(netG,utils_net_for_cgintrinsic_net.MultiUnetGenerator)