def mk_final_pred_item(): CHECKPOINT_SAVE_PATH = os.path.join(os.path.dirname(__file__), os.pardir, 'model_checkpoints') tf.reset_default_graph() # used to map the output from the prediction to the emotion class X = tf.placeholder( tf.float32, shape=[None, 48, 48, 3] ) keep_prob = tf.placeholder(tf.float32) y_conv = model(X, keep_prob) with tf.Session(config=config) as sess: saver = tf.train.Saver() saver.restore(sess, os.path.join(CHECKPOINT_SAVE_PATH, 'model.ckpt')) name_item = from_cam(sess,X,y_conv,keep_prob) print(name_item) return name_item
files = glob.glob(emoji_png_files_path) logger.info('loading the emoji png files in memory ...') import platform if platform.system() == 'Windows': split_string = '\\' else: split_string = '/' for file in tqdm.tqdm(files): logger.debug('file path: {}'.format(file)) emoji_to_pic[file.split(split_string)[-1].split('.')[0]] = cv2.imread( file, -1) X = tf.placeholder(tf.float32, shape=[None, 48, 48, 1]) keep_prob = tf.placeholder(tf.float32) y_conv = model(X, keep_prob) saver = tf.train.Saver() with tf.Session(config=config) as sess: saver.restore(sess, os.path.join(CHECKPOINT_SAVE_PATH, 'model.ckpt')) logger.info('Opening the camera for getting the video feed ...') logger.info('PRESS "q" AT ANY TIME TO EXIT!') from_cam(sess)