Exemple #1
0
def sovle_rrt(src, dst):
    # x_init = (10.7016,0.472867,0.813236 )  # starting location
    # x_goal = (-5,0,1)  # goal location
    x_init = tuple([x * 10 for x in x_init])
    x_goal = tuple([x * 10 for x in x_goal])

    print('src, dst= ', x_init, x_goal)

    Q = np.array([(2, 1)])  # length of tree edges
    r = 1  # length of smallest edge to check for intersection with obstacles
    max_samples = 1024  # max number of samples to take before timing out
    rewire_count = 32  # optional, number of nearby branches to rewire
    prc = 0.01  # probability of checking for a connection to goal

    # create Search Space
    X = SearchSpace(X_dimensions, Obstacles)

    # create rrt_search
    # for t in range(100):
    #     a=time.time()
    rrt = RRTStarBidirectionalHeuristic(X, Q, x_init, x_goal, max_samples, r,
                                        prc, rewire_count)
    path = rrt.rrt_star_bid_h()
    for j in range(len(path)):
        path[j] = [path[j][i] / 10 for i in range(len(path[j]))]
    #     b=time.time()
    #     print('time=', b-a)
    print(path)

    # plot
    plot = Plot("rrt_star_bid_h_3d")
    plot.plot_tree(X, rrt.trees)
    if path is not None:
        plot.plot_path(X, path)
    plot.plot_obstacles(X, Obstacles)
    plot.plot_start(X, x_init)
    plot.plot_goal(X, x_goal)
    plot.draw(auto_open=True)
from src.search_space.search_space import SearchSpace
from src.utilities.obstacle_generation import generate_random_obstacles
from src.utilities.plotting import Plot

X_dimensions = np.array([(0, 100), (0, 100)])  # dimensions of Search Space
x_init = (0, 0)  # starting location
x_goal = (100, 100)  # goal location

Q = np.array([(8, 4)])  # length of tree edges
r = 1  # length of smallest edge to check for intersection with obstacles
max_samples = 1024  # max number of samples to take before timing out
prc = 0.1  # probability of checking for a connection to goal

# create search space
X = SearchSpace(X_dimensions)
n = 50
Obstacles = generate_random_obstacles(X, x_init, x_goal, n)
# create rrt_search
rrt = RRT(X, Q, x_init, x_goal, max_samples, r, prc)
path = rrt.rrt_search()

# plot
plot = Plot("rrt_2d_with_random_obstacles")
plot.plot_tree(X, rrt.trees)
if path is not None:
    plot.plot_path(X, path)
plot.plot_obstacles(X, Obstacles)
plot.plot_start(X, x_init)
plot.plot_goal(X, x_goal)
plot.draw(auto_open=True)
    # This can help avoid the robot to be trapped at some undesirable position
    if fail == max_fail_time:
        path.pop()
        Coef.pop()
        x = path[-1]

print("--- %s seconds ---" % (time.time() - start_time))
# TODO : Post-processing
# Get rid of the small steps

# Generate trajectory from way-point
traj = []
X_plot = []
Z_plot = []

for i in range(len(path) - 1):
    dx = (path[i + 1][0] - path[i][0]) / 100
    for j in range(100):
        x_x = path[i][0] + j * dx
        x_z = Coef[i][0] * x_x**2 + Coef[i][1] * x_x + Coef[i][2]
        traj.append((x_x, x_z))
        X_plot.append(x_x)
        Z_plot.append(x_z)
traj.append(path[-1])

plot = Plot("jumpleg")
plot.plot_path(X, traj)
plot.plot_obstacles(X, Obstacles)
plot.plot_start(X, x_init)
plot.plot_goal(X, x_goal)
plot.draw(auto_open=True)
Exemple #4
0
import numpy as np

from src.rrt.rrt import RRT
from src.search_space.search_space import SearchSpace
from src.utilities.plotting import Plot

# x right
# y down
# z forward
dimensions = np.array([(-5, 5), (-5, 5), (-1, 9)])
obstacles = np.array([(-5, -0.5, 4, 5, 0.5, 5)])
start = (0, 0, 0)
goal = (0, 0, 9)
q = [(0.5, 3)]
r = 0.1
max_samples = 128
prc = 0.1

space = SearchSpace(dimensions, obstacles)
rrt = RRT(space, q, start, goal, max_samples, r, prc)
path = rrt.rrt_search()

plot = Plot("eoc_rrt")
plot.plot_tree(space, rrt.trees)
if path is not None:
    plot.plot_path(space, path)
plot.plot_obstacles(space, obstacles)
plot.plot_start(space, start)
plot.plot_goal(space, goal)
plot.draw(auto_open=True)