Exemple #1
0
def main():
    from src.utils import data_utils
    from keras import layers
    from matplotlib import pyplot as plt

    x, y = data_utils.get_data_in_shape('EA', (['CPI'], ['CPI']), 1)
    x_train, x_val, x_test, = data_utils.train_val_test_split(x, 12, 12)
    y_train, y_val, y_test = data_utils.train_val_test_split(y, 12, 12)

    input = Input(batch_shape=(1, 1,))
    layer = layers.Reshape((1, 1))(input)
    layer = layers.LSTM(10, stateful=True)(layer)
    # layer = layers.LSTM(10, return_sequences=False, stateful=True)(layer)
    layer = layers.Dense(1, activation='linear')(layer)

    model = RecurrentModel(inputs=input, outputs=layer)
    model.compile(optimizer='adam', loss='mse')

    model.fit(x_train, y_train, epochs=200, batch_size=1)
    pred = model.predict(x_val, batch_size=1)
    fcast = model.forecast(x_val, y_val, batch_size=1)

    from keras.utils.vis_utils import plot_model

    plot_model(model)
    model.summary()

    plt.plot(y_val.values)
    plt.plot(pred)
    plt.show()

    plt.plot(y_val.values)
    plt.plot(fcast)
    plt.show()
def persistence_mse(series):
    columns = ['train pred', 'val pred', 'test pred']
    lossess = OrderedDict([(i, 0) for i in columns])

    y_pred, y_true = data_utils.get_xy_data(series, 1)
    true_data = data_utils.train_val_test_split(y_true, 12, 12)
    pred_data = data_utils.train_val_test_split(y_pred, 12, 12)

    for pred, true, col in zip(pred_data, true_data, columns):
        lossess[col] = mse(true, pred)

    return pd.DataFrame(lossess, index=[0])
Exemple #3
0
    def set_data_params(self, **data_params):
        self.x, self.y = data_utils.get_data_in_shape(**data_params)

        if self.difference:
            self.x, self.y = self.transformer.fit(self.x, self.y)

        self.x_train, self.x_val, self.x_test, = data_utils.train_val_test_split(self.x, 12, 12)
        self.y_train, self.y_val, self.y_test = data_utils.train_val_test_split(self.y, 12, 12)

        self.data_params = data_params
        self.is_multioutput = len(data_params['vars'][1]) > 1
        self.variables = data_params['vars'][1]
        self.is_data_set = True
        self.is_fitted = False
Exemple #4
0
def one_one():
    from src.utils import data_utils
    from keras import layers

    x, y = data_utils.get_data_in_shape('EA', (['CPI'], ['CPI']), 1)
    x_train, x_val, x_test, = data_utils.train_val_test_split(x, 12, 12)
    y_train, y_val, y_test = data_utils.train_val_test_split(y, 12, 12)

    input = Input(shape=(1,))
    layer = Dense(1)(input)

    model = ForecastModel(inputs=input, outputs=layer)
    model.compile(optimizer='adam', loss='mse')

    print model.forecast(x_val, y_val)
def persistence_prediction(series):
    y_pred, y_true = data_utils.get_xy_data(series, 1)
    y_train, y_val, y_test = data_utils.train_val_test_split(y_pred, 12, 12)
    predictions = pd.concat([y_true, y_train, y_val, y_test], axis=1)
    predictions.columns = [
        'true values', 'train prediction', 'val prediction', 'test prediction'
    ]
    return predictions
Exemple #6
0
def many_one():
    from src.utils import data_utils
    from keras import layers

    x, y = data_utils.get_data_in_shape('EA', (['CPI', 'GDP'], ['CPI']), 2)
    x_train, x_val, x_test, = data_utils.train_val_test_split(x, 12, 12)
    y_train, y_val, y_test = data_utils.train_val_test_split(y, 12, 12)

    input1 = Input(shape=(2,))
    input2 = Input(shape=(2,))

    layer = layers.concatenate([input1, input2])
    layer = Dense(1)(layer)

    model = ForecastModel(inputs=[input1, input2], outputs=layer)
    model.compile(optimizer='adam', loss='mse')

    print model.forecast(x_val, y_val)
Exemple #7
0
def main():
    data_params = OrderedDict()
    data_params['country'] = 'EA'
    data_params['vars'] = (['CPI', 'GDP'], ['CPI', 'GDP'])
    data_params['lags'] = (1, 1)

    tr = DifferenceTransformer()

    x, y = data_utils.get_data_in_shape(**data_params)
    x, y = tr.fit(x, y)
    x_train, x_val, x_test = data_utils.train_val_test_split(x, 12, 12)
    y_train, y_val, y_test = data_utils.train_val_test_split(y, 12, 12)

    curr_x = x_val
    cuur_y = y_val
    x_trans, y_trans = tr.transform(curr_x, cuur_y)
    y_orig = tr.inverse_transform(y_trans.values, cuur_y)

    print np.concatenate([cuur_y, y_orig], axis=1)
    print y_orig