def test_determinist_init():
        seed1 = set_and_print_random_seed()
        DetLin = nn.Linear(32*7*7,10)
        BayLin = GaussianLinear(1, 32 * 7 * 7, 10)
        set_and_print_random_seed(seed1)
        BayLin.reset_parameters()

        assert torch.sum(torch.abs(BayLin.mu - DetLin.weight)) == 0
        assert torch.sum(torch.abs(BayLin.mu_bias - DetLin.bias)) == 0
    def test_determinist_init():
        seed1 = set_and_print_random_seed()
        DetCNN = nn.Conv2d(1, 16, 3)
        BayCNN = GaussianCNN(1, 1, 16, 3)
        set_and_print_random_seed(seed1)
        BayCNN.reset_parameters()

        assert torch.sum(torch.abs(BayCNN.mu - DetCNN.weight)) == 0
        assert torch.sum(torch.abs(BayCNN.mu_bias - DetCNN.bias)) == 0
    def test_determinist_forward_and_init():
        seed1 = set_and_print_random_seed()
        DetLin = nn.Linear(32*7*7, 10)
        BayLin = GaussianLinear('determinist', 32 * 7 * 7, 10)
        set_and_print_random_seed(seed1)
        BayLin.reset_parameters()
        image = torch.rand(1, 32*7*7)
        output1 = BayLin(image)
        output2 = DetLin(image)

        assert torch.sum(torch.abs(output1 - output2)) == 0
    def test_determinist_forward_and_init():
        seed1 = set_and_print_random_seed()
        DetCNN = nn.Conv2d(1, 16, 3)
        BayCNN = GaussianCNN('determinist', 1, 16, 3)
        set_and_print_random_seed(seed1)
        BayCNN.reset_parameters()
        image = torch.rand(1, 1, 28, 28)
        output1 = BayCNN(image)
        output2 = DetCNN(image)

        assert torch.sum(torch.abs(output1 - output2)) == 0
Exemple #5
0
def eval_random(model,
                batch_size,
                img_channels,
                img_dim,
                number_of_tests,
                random_seed=None,
                verbose=False,
                device='cpu'):
    """

    Args:
        model (torch.nn.Module child): the model we evaluate
        batch_size (int): The size of the random sample
        img_channels (int): dimension of the random sample
        img_dim (int): dimension of the random sample
        number_of_tests (int): the number of times we do a forward for each input
        random_seed (int): the seed of the random generation, for reproducibility
        verbose (Bool): whether we want a progress bar or not
        device (torch.device || str): which device to compute on (either on GPU or CPU). Either torch.device type or
                                      specific string 'cpu' or 'gpu'.

    Returns:
        torch.Tensor: size (batch_size): the variation-ratio uncertainty
        torch.Tensor: size (batch_size): the predictive entropy uncertainty
        torch.Tensor: size (batch_size): the mutual information uncertainty
        int: the seed of the random generation, for reproducibility

    """
    number_of_classes = model.number_of_classes
    seed = set_and_print_random_seed(random_seed)
    random_noise = torch.randn(batch_size, img_channels, img_dim,
                               img_dim).to(device)
    output_random = torch.Tensor(number_of_tests, batch_size,
                                 number_of_classes)
    if verbose:
        iterator = tqdm(range(number_of_tests))
    else:
        iterator = range(number_of_tests)
    for test_idx in iterator:
        output_random[test_idx] = model(random_noise).detach()
    return output_random, seed
else:
    device = 'cpu'
device = torch.device(device)

if trainset == 'mnist':
    trainloader, valloader, evalloader = get_mnist(train_labels=range(10),
                                                   eval_labels=range(10),
                                                   batch_size=batch_size)
    dim_input = 28
    dim_channels = 1
if trainset == 'cifar10':
    trainloader, evalloader = get_cifar10(batch_size=batch_size)
    dim_input = 32
    dim_channels = 3

seed_model = set_and_print_random_seed()
bay_net = GaussianClassifier(rho=rho,
                             stds_prior=stds_prior,
                             dim_input=dim_input,
                             number_of_classes=10,
                             dim_channels=dim_channels)
bay_net.to(device)
criterion = CrossEntropyLoss()
if loss_type == 'uniform':
    step_function = uniform
    loss = BBBLoss(bay_net, criterion, step_function)
elif loss_type == 'exp':

    def step_function(batch_idx, number_of_batches):
        return 2**(number_of_batches - batch_idx) / (2**number_of_batches - 1)