def freeze_A_to_solution_and_fit(): # used to debug infs # from tests.test_vi import test_elbo_components, test_q_E_logstick SCALE = 1. N = 500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP(1.5, 6, 0.1, 0.05, 36) model.phi.data[:4] = SCALE * gg_blocks() model.init_z(N) model.train() visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(model.nu.detach().numpy(), 0) optimizer = torch.optim.Adam(model.parameters(), 0.1) for i in range(20): model.cavi(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, model.elbo(X).item())) print("CHANGE OF REGIME") visualize_A_save(model.phi.detach().numpy(), 20) visualize_nu_save(model.nu.detach().numpy(), 20) import ipdb ipdb.set_trace()
def show_that_ADVI_init_doesnt_matter(): SCALE = 1. N = 500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP(1.5, 6, 0.1, 0.05, 36) model.phi.data[:4] = SCALE * gg_blocks() model.init_z(N) model.train() visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(model.nu.detach().numpy(), 0) optimizer = torch.optim.Adam(model.parameters(), 0.003) for i in range(1000): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() optimizer.step() assert loss.item() != np.inf, "loss is inf" visualize_A_save(model.phi.detach().numpy(), 1000) visualize_nu_save(model.nu.detach().numpy(), 1000)
def vae_test(): N = 1500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP_VAE(1.5, 6, 0.1, 0.05, 36) model.train() nu = model.nu(X) visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(nu.detach().numpy(), 0) optimizer = torch.optim.Adam([{ 'params': [model._tau] }, { 'params': model.nu.parameters() }, { 'params': [model._phi_var, model.phi], 'lr': 0.003 }], lr=0.1) elbo_array = [] iter_count = 0 for j in range(15): for i in range(1000): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() optimizer.step() iter_count += 1 assert loss.item() != np.inf, "loss is inf" elbo_array.append(-loss.item()) visualize_A_save(model.phi.detach().numpy(), iter_count) visualize_nu_save(model.most_recent_nu.detach().numpy(), iter_count) model.nu.apply(init_weights) plt.plot(np.arange(len(elbo_array)), np.array(elbo_array)) plt.show() import ipdb ipdb.set_trace()
def find_a_better_scheme(): SCALE = 1. N = 500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP(1.5, 6, 0.1, 0.05, 36) model.init_z(N) model.train() visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(model.nu.detach().numpy(), 0) optimizer = torch.optim.Adam([{ 'params': [model._nu, model._tau] }, { 'params': [model._phi_var, model.phi], 'lr': 0.003 }], lr=0.1) elbo_array = [] iter_count = 0 for j in range(6): for i in range(1000): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() optimizer.step() iter_count += 1 assert loss.item() != np.inf, "loss is inf" elbo_array.append(-loss.item()) visualize_A_save(model.phi.detach().numpy(), iter_count) visualize_nu_save(model.nu.detach().numpy(), iter_count) model._nu.data = torch.randn(model._nu.shape) plt.plot(np.arange(len(elbo_array)), np.array(elbo_array)) plt.show() import ipdb ipdb.set_trace()
def check_gradient_of_tau_after_some_updates(): from matplotlib import pyplot as plt SCALE = 1. N = 500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP(1.5, 6, 0.1, 0.05, 36) model.init_z(N) model.train() optimizer = torch.optim.Adam([{'params': [model._nu, model._tau]}, {'params': [model._phi_var, model.phi], 'lr': 0.003}], lr=0.1) elbo_array = [] iter_count = 0 # values = np.zeros((6 * 3000, 12)) for j in range(6): for i in range(1000): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() optimizer.step() assert loss.item() != np.inf, "loss is inf" elbo_array.append(-loss.item()) # values[iter_count] = model.tau.detach().numpy().reshape((-1,)) iter_count += 1 # plt.figure() # for i in range(12): # plt.plot(np.arange(3000), values[j*3000:(j + 1)*3000, i]) # plt.savefig('tau_set_{}.png'.format(j)) visualize_A_save(model.phi.detach().numpy(), iter_count) visualize_nu_save(model.nu.detach().numpy(), iter_count) model._nu.data = torch.randn(model._nu.shape)
def freeze_A_to_solution_and_fit(): # used to debug infs # from tests.test_vi import test_elbo_components, test_q_E_logstick SCALE = 1. N = 500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP(1.5, 6, 0.1, 0.05, 36) model.phi.data[:4] = SCALE * gg_blocks() model.init_z(N) model.train() visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(model.nu.detach().numpy(), 0) optimizer = torch.optim.Adam(model.parameters(), 0.1) for i in range(1000): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() # zero out the grad on phi, phi_var model.phi.grad.zero_() model._phi_var.grad.zero_() optimizer.step() assert loss.item() != np.inf, "loss is inf" print("CHANGE OF REGIME") visualize_A_save(model.phi.detach().numpy(), 1000) visualize_nu_save(model.nu.detach().numpy(), 1000) for param_group in optimizer.param_groups: param_group['lr'] = 0.001 for i in range(500): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() optimizer.step() assert loss.item() != np.inf, "loss is inf" visualize_A_save(model.phi.detach().numpy(), 1500) visualize_nu_save(model.nu.detach().numpy(), 1500) import ipdb; ipdb.set_trace()
def find_a_better_scheme(nu_resets=False,tempering=False): from matplotlib import pyplot as plt print("") print("") print("") print("NU RESETS:",nu_resets) print("TEMPERING:",tempering) N = 500 sigma_n = 0.05 print("DATA SIZE:",N) print("DATA NOISE:",sigma_n) X = generate_gg_blocks_dataset(N, sigma_n) alpha=1.5 K = 6 D = 36 sigma_a = 0.1 print("ALPHA:",alpha) print("K:",K) print("SIGMA N:",sigma_n) print("SIGMA A:",sigma_a) model = InfiniteIBP(alpha, K, sigma_a, sigma_n, D) model.init_z(N) if tempering: print("INIT TEMPERING PARAMS") M = 10 print("NUM TEMPERATURES:",M) model.init_r_and_T(N,M) model.train() visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(model.nu.detach().numpy(), 0) if tempering: print("Initing optimizer with tempering params included") optimizer = torch.optim.Adam([{'params': [model._nu, model._tau, model._r]}, {'params': [model._phi_var, model.phi], 'lr': 0.003}], lr=0.1) else: optimizer = torch.optim.Adam([{'params': [model._nu, model._tau]}, {'params': [model._phi_var, model.phi], 'lr': 0.003}], lr=0.1) elbo_array = [] iter_count = 0 for j in range(6): for i in range(1000): optimizer.zero_grad() elbo = model.elbo(X) loss = -elbo if tempering: loss = -model.elbo_tempered(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, elbo.item())) loss.backward() optimizer.step() iter_count += 1 assert loss.item() != np.inf, "loss is inf" elbo_array.append(elbo.item()) visualize_A_save(model.phi.detach().numpy(), iter_count) visualize_nu_save(model.nu.detach().numpy(), iter_count) if nu_resets: model._nu.data = torch.randn(model._nu.shape) plt.plot(np.arange(len(elbo_array)), np.array(elbo_array)) plt.show() import ipdb; ipdb.set_trace()
from src.vi import InfiniteIBP from src.utils import register_hooks, visualize_A, visualize_A_save, visualize_nu_save from src.data import generate_gg_blocks, generate_gg_blocks_dataset, gg_blocks N = 500 X = generate_gg_blocks_dataset(N, 0.05) model = InfiniteIBP(1.5, 6, 0.1, 0.05, 36) model.init_z(N) model.train() visualize_A_save(model.phi.detach().numpy(), 0) visualize_nu_save(model.nu.detach().numpy(), 0) optimizer = torch.optim.Adam([{'params': [model._nu, model._tau]}, {'params': [model._phi_var, model.phi], 'lr': 0.003}], lr=0.1) elbo_array = [] iter_count = 0 for j in range(10): for i in range(1000): optimizer.zero_grad() loss = -model.elbo(X) print("[Epoch {:<3}] ELBO = {:.3f}".format(i + 1, -loss.item())) loss.backward() optimizer.step()