Exemple #1
0
 def show(self, ax, **kwargs):
     I = np.zeros(len(self.f))
     for i in xrange(len(self.f)):
         I[i] = discrete_time_primitive(self.v, self.H[:, i], area = True)
     I = discrete_time_primitive(self.f, I, area = True)
     H = np.ma.masked_where(self.H == 0., self.H)
     ax.pcolormesh1(1. / self.f, self.v, H / I, **kwargs)
     ax.set_xscale('log')
     ax.set_yscale('log')
Exemple #2
0
    def show(self, ax, **kwargs):
        I = np.zeros(len(self.z))
        for i in xrange(len(self.z)):
            I[i] = discrete_time_primitive(self.v, self.H[i, :], area=True)
        I = discrete_time_primitive(self.z, I, area=True)

        H = np.ma.masked_where(self.H == 0., self.H)
        v_ = np.concatenate((self.v, [self.v[-1] + self.v[-1] - self.v[-2]]))
        z_ = np.concatenate((self.z, [self.z[-1] + self.z[-1] - self.z[-2]]))
        ax.pcolormesh1(v_, z_, H / I, **kwargs)
        if not ax.yaxis_inverted():
            ax.invert_yaxis()
Exemple #3
0
def U2C(nu, u, nuo, co):
    """signaltools.U2C : convert group to phase velocity. Knowledge of the phase dispersion curve is needed at a given frequency nuo.
    nuo must appear into frequency array nu. nuo must be as low as possible.
    input :
        nu   = numpy.ndarray, frequency array (positive) of the group dispersion curve (Hz)
        u    = numpy.ndarray, group dispersion curve (km/s)
        nuo  = float, reference frequency (Hz)
        co   = float, reference phase velocity (km/s)
    output :
        nu_  = numpy.ndarray, frequency array of the phase dispersion curve (Hz)
        c    = numpy.ndarray, phase dispersion curve (km/s)
    """
    Is = nu.argsort()
    nus, us = nu[Is], u[Is]
    if nuo < nu.min() or nuo > nu.max():
        raise ValueError('reference frequency nuo (%f Hz) must be between %f Hz and %f Hz' % (nuo, nu.min(), nu.max()))
    nu_ = nus
    su = discrete_time_primitive(nus, 1. / us, area=False)
    if abs(nu_ - nuo).min() > 0.:
        # need to intepolate su at point nuo
        suo = np.interp(x=nuo, xp=nu_, fp=su)
    else:
        suo = su[abs(nu_ - nuo).argmin()]

    c = co * np.ones(len(nu_))
    Iok = nu_ != nuo
    c[Iok] = nu_[Iok] / (nuo / co + (su[Iok] - suo))
    return nu_, c
Exemple #4
0
    def interp(self, z, interpmethod=None):
        """
        :param z: depth at which to interpolate the model
        :param interpmethod:
            method "stairs" means simply reading the "staired" model at input depths z
            method "weightedstairs" means creating a new model that preserves the average values
                use it to resample a depthmodel without loosing its average shape
        :return:
            values of the depthmodel at required depth z
        """
        if interpmethod is None:
            #no user specification, use the default interpolation method
            interpmethod = self.interpmethod

        if interpmethod == "stairs":
            Z, V = self.stairs()
            return np.interp(xp=Z, fp=V, x=z, left=V[0], right=V[-1])
        elif interpmethod == "weightedstairs":
            # determine the stairs shape of the model
            Z, V = self.stairs()
            Z[-1] = 10. * Z[-2]

            # compute model integral
            U = discrete_time_primitive(Z, V) + V[0]
            u = np.interp(xp=Z, fp=U, x=z, left=U[0], right=U[-1])

            # derivate the integral at required location
            newv = np.concatenate(
                ((u[1:] - u[:-1]) / (z[1:] - z[:-1]), [V[-1]]))

            return newv

        else:
            raise ValueError('interpmethod %s not valid for %s' %
                             (interpmethod, type(self)))