Exemple #1
0
    def __init__(self,
                 encoder_output_dim: int,
                 action_embedding_dim: int,
                 input_attention: Attention,
                 num_start_types: int,
                 num_entity_types: int,
                 mixture_feedforward: FeedForward = None,
                 dropout: float = 0.0,
                 unlinked_terminal_indices: List[int] = None) -> None:
        super(WikiTablesDecoderStep, self).__init__()
        self._mixture_feedforward = mixture_feedforward
        self._entity_type_embedding = Embedding(num_entity_types,
                                                action_embedding_dim)
        self._input_attention = input_attention

        self._num_start_types = num_start_types
        self._start_type_predictor = Linear(encoder_output_dim,
                                            num_start_types)

        # Decoder output dim needs to be the same as the encoder output dim since we initialize the
        # hidden state of the decoder with the final hidden state of the encoder.
        output_dim = encoder_output_dim
        input_dim = output_dim
        # Our decoder input will be the concatenation of the decoder hidden state and the previous
        # action embedding, and we'll project that down to the decoder's `input_dim`, which we
        # arbitrarily set to be the same as `output_dim`.
        self._input_projection_layer = Linear(
            output_dim + action_embedding_dim, input_dim)
        # Before making a prediction, we'll compute an attention over the input given our updated
        # hidden state. Then we concatenate those with the decoder state and project to
        # `action_embedding_dim` to make a prediction.
        self._output_projection_layer = Linear(output_dim + encoder_output_dim,
                                               action_embedding_dim)
        if unlinked_terminal_indices is not None:
            # This means we are using coverage to train the parser.
            # These factors are used to add the embeddings of yet to be produced actions to the
            # predicted embedding, and to boost the action logits of yet to be produced linked
            # actions, respectively.
            self._unlinked_checklist_multiplier = Parameter(
                torch.FloatTensor([1.0]))
            self._linked_checklist_multiplier = Parameter(
                torch.FloatTensor([1.0]))

        self._unlinked_terminal_indices = unlinked_terminal_indices
        # TODO(pradeep): Do not hardcode decoder cell type.
        self._decoder_cell = LSTMCell(input_dim, output_dim)

        if mixture_feedforward is not None:
            check_dimensions_match(output_dim,
                                   mixture_feedforward.get_input_dim(),
                                   "hidden state embedding dim",
                                   "mixture feedforward input dim")
            check_dimensions_match(mixture_feedforward.get_output_dim(), 1,
                                   "mixture feedforward output dim",
                                   "dimension for scalar value")

        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
Exemple #2
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 binary_feature_dim: int,
                 embedding_dropout: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None,
                 label_smoothing: float = None) -> None:
        super(SemanticRoleLabeler, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.num_classes = self.vocab.get_vocab_size("labels")

        # For the span based evaluation, we don't want to consider labels
        # for verb, because the verb index is provided to the model.
        self.span_metric = SpanBasedF1Measure(vocab,
                                              tag_namespace="labels",
                                              ignore_classes=["V"])

        self.encoder = encoder
        # There are exactly 2 binary features for the verb predicate embedding.
        self.binary_feature_embedding = Embedding(2, binary_feature_dim)
        self.tag_projection_layer = TimeDistributed(
            Linear(self.encoder.get_output_dim(), self.num_classes))
        self.embedding_dropout = Dropout(p=embedding_dropout)
        self._label_smoothing = label_smoothing

        check_dimensions_match(
            text_field_embedder.get_output_dim() + binary_feature_dim,
            encoder.get_input_dim(),
            "text embedding dim + verb indicator embedding dim",
            "encoder input dim")
        initializer(self)
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 attend_feedforward: FeedForward,
                 similarity_function: SimilarityFunction,
                 compare_feedforward: FeedForward,
                 aggregate_feedforward: FeedForward,
                 premise_encoder: Optional[Seq2SeqEncoder] = None,
                 hypothesis_encoder: Optional[Seq2SeqEncoder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(DecomposableAttention, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._attend_feedforward = TimeDistributed(attend_feedforward)
        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._compare_feedforward = TimeDistributed(compare_feedforward)
        self._aggregate_feedforward = aggregate_feedforward
        self._premise_encoder = premise_encoder
        self._hypothesis_encoder = hypothesis_encoder or premise_encoder

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(),
                               "text field embedding dim", "attend feedforward input dim")
        check_dimensions_match(aggregate_feedforward.get_output_dim(), self._num_labels,
                               "final output dimension", "number of labels")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
Exemple #4
0
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 label_namespace: str = "labels",
                 constraint_type: str = None,
                 feedforward: FeedForward = None,
                 include_start_end_transitions: bool = True,
                 dropout: float = None,
                 verbose_metrics: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self.label_namespace = label_namespace
        self.text_field_embedder = text_field_embedder
        self.num_tags = self.vocab.get_vocab_size(label_namespace)
        self.encoder = encoder
        self._verbose_metrics = verbose_metrics
        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
        else:
            self.dropout = None
        self._feedforward = feedforward

        if feedforward is not None:
            output_dim = feedforward.get_output_dim()
        else:
            output_dim = self.encoder.get_output_dim()
        self.tag_projection_layer = TimeDistributed(Linear(output_dim,
                                                           self.num_tags))

        if constraint_type is not None:
            labels = self.vocab.get_index_to_token_vocabulary(label_namespace)
            constraints = allowed_transitions(constraint_type, labels)
        else:
            constraints = None

        self.crf = ConditionalRandomField(
                self.num_tags, constraints,
                include_start_end_transitions=include_start_end_transitions
        )

        self.span_metric = SpanBasedF1Measure(vocab,
                                              tag_namespace=label_namespace,
                                              label_encoding=constraint_type or "BIO")


        check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        if feedforward is not None:
            check_dimensions_match(encoder.get_output_dim(), feedforward.get_input_dim(),
                                   "encoder output dim", "feedforward input dim")
        initializer(self)
Exemple #5
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 matcher_word: BiMpmMatching,
                 encoder1: Seq2SeqEncoder,
                 matcher_forward1: BiMpmMatching,
                 matcher_backward1: BiMpmMatching,
                 encoder2: Seq2SeqEncoder,
                 matcher_forward2: BiMpmMatching,
                 matcher_backward2: BiMpmMatching,
                 aggregator: Seq2VecEncoder,
                 classifier_feedforward: FeedForward,
                 dropout: float = 0.1,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(BiMpm, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder

        self.matcher_word = matcher_word

        self.encoder1 = encoder1
        self.matcher_forward1 = matcher_forward1
        self.matcher_backward1 = matcher_backward1

        self.encoder2 = encoder2
        self.matcher_forward2 = matcher_forward2
        self.matcher_backward2 = matcher_backward2

        self.aggregator = aggregator

        matching_dim = self.matcher_word.get_output_dim() + \
                       self.matcher_forward1.get_output_dim() + self.matcher_backward1.get_output_dim() + \
                       self.matcher_forward2.get_output_dim() + self.matcher_backward2.get_output_dim()

        check_dimensions_match(matching_dim, self.aggregator.get_input_dim(),
                               "sum of dim of all matching layers",
                               "aggregator input dim")

        self.classifier_feedforward = classifier_feedforward

        self.dropout = torch.nn.Dropout(dropout)

        self.metrics = {"accuracy": CategoricalAccuracy()}

        self.loss = torch.nn.CrossEntropyLoss()

        initializer(self)
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(SimpleTagger, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.num_classes = self.vocab.get_vocab_size("labels")
        self.encoder = encoder
        self.tag_projection_layer = TimeDistributed(
            Linear(self.encoder.get_output_dim(), self.num_classes))

        check_dimensions_match(text_field_embedder.get_output_dim(),
                               encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        self.metrics = {
            "accuracy": CategoricalAccuracy(),
            "accuracy3": CategoricalAccuracy(top_k=3)
        }

        initializer(self)
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 span_extractor: SpanExtractor,
                 encoder: Seq2SeqEncoder,
                 feedforward: FeedForward = None,
                 pos_tag_embedding: Embedding = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None,
                 evalb_directory_path: str = DEFAULT_EVALB_DIR) -> None:
        super(SpanConstituencyParser, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.span_extractor = span_extractor
        self.num_classes = self.vocab.get_vocab_size("labels")
        self.encoder = encoder
        self.feedforward_layer = TimeDistributed(
            feedforward) if feedforward else None
        self.pos_tag_embedding = pos_tag_embedding or None
        if feedforward is not None:
            output_dim = feedforward.get_output_dim()
        else:
            output_dim = span_extractor.get_output_dim()

        self.tag_projection_layer = TimeDistributed(
            Linear(output_dim, self.num_classes))

        representation_dim = text_field_embedder.get_output_dim()
        if pos_tag_embedding is not None:
            representation_dim += pos_tag_embedding.get_output_dim()
        check_dimensions_match(
            representation_dim, encoder.get_input_dim(),
            "representation dim (tokens + optional POS tags)",
            "encoder input dim")
        check_dimensions_match(encoder.get_output_dim(),
                               span_extractor.get_input_dim(),
                               "encoder input dim", "span extractor input dim")
        if feedforward is not None:
            check_dimensions_match(span_extractor.get_output_dim(),
                                   feedforward.get_input_dim(),
                                   "span extractor output dim",
                                   "feedforward input dim")

        self.tag_accuracy = CategoricalAccuracy()

        if evalb_directory_path is not None:
            self._evalb_score = EvalbBracketingScorer(evalb_directory_path)
        else:
            self._evalb_score = None
        initializer(self)
Exemple #8
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 similarity_function: SimilarityFunction,
                 projection_feedforward: FeedForward,
                 inference_encoder: Seq2SeqEncoder,
                 output_feedforward: FeedForward,
                 output_logit: FeedForward,
                 dropout: float = 0.5,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._encoder = encoder

        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._projection_feedforward = projection_feedforward

        self._inference_encoder = inference_encoder

        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
            self.rnn_input_dropout = InputVariationalDropout(dropout)
        else:
            self.dropout = None
            self.rnn_input_dropout = None

        self._output_feedforward = output_feedforward
        self._output_logit = output_logit

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(text_field_embedder.get_output_dim(),
                               encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        check_dimensions_match(encoder.get_output_dim() * 4,
                               projection_feedforward.get_input_dim(),
                               "encoder output dim",
                               "projection feedforward input")
        check_dimensions_match(projection_feedforward.get_output_dim(),
                               inference_encoder.get_input_dim(),
                               "proj feedforward output dim",
                               "inference lstm input dim")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
Exemple #9
0
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 num_highway_layers: int,
                 phrase_layer: Seq2SeqEncoder,
                 similarity_function: SimilarityFunction,
                 modeling_layer: Seq2SeqEncoder,
                 span_end_encoder: Seq2SeqEncoder,
                 dropout: float = 0.2,
                 mask_lstms: bool = True,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(BidirectionalAttentionFlow, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._highway_layer = TimeDistributed(Highway(text_field_embedder.get_output_dim(),
                                                      num_highway_layers))
        self._phrase_layer = phrase_layer
        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._modeling_layer = modeling_layer
        self._span_end_encoder = span_end_encoder

        encoding_dim = phrase_layer.get_output_dim()
        modeling_dim = modeling_layer.get_output_dim()
        span_start_input_dim = encoding_dim * 4 + modeling_dim
        self._span_start_predictor = TimeDistributed(torch.nn.Linear(span_start_input_dim, 1))

        span_end_encoding_dim = span_end_encoder.get_output_dim()
        span_end_input_dim = encoding_dim * 4 + span_end_encoding_dim
        self._span_end_predictor = TimeDistributed(torch.nn.Linear(span_end_input_dim, 1))

        # Bidaf has lots of layer dimensions which need to match up - these aren't necessarily
        # obvious from the configuration files, so we check here.
        check_dimensions_match(modeling_layer.get_input_dim(), 4 * encoding_dim,
                               "modeling layer input dim", "4 * encoding dim")
        check_dimensions_match(text_field_embedder.get_output_dim(), phrase_layer.get_input_dim(),
                               "text field embedder output dim", "phrase layer input dim")
        check_dimensions_match(span_end_encoder.get_input_dim(), 4 * encoding_dim + 3 * modeling_dim,
                               "span end encoder input dim", "4 * encoding dim + 3 * modeling dim")

        self._span_start_accuracy = CategoricalAccuracy()
        self._span_end_accuracy = CategoricalAccuracy()
        self._span_accuracy = BooleanAccuracy()
        self._squad_metrics = SquadEmAndF1()
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
        self._mask_lstms = mask_lstms

        initializer(self)
Exemple #10
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 tag_representation_dim: int,
                 arc_representation_dim: int,
                 tag_feedforward: FeedForward = None,
                 arc_feedforward: FeedForward = None,
                 pos_tag_embedding: Embedding = None,
                 use_mst_decoding_for_validation: bool = True,
                 dropout: float = 0.0,
                 input_dropout: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(BiaffineDependencyParser, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.encoder = encoder

        encoder_dim = encoder.get_output_dim()

        self.head_arc_feedforward = arc_feedforward or \
                                        FeedForward(encoder_dim, 1,
                                                    arc_representation_dim,
                                                    Activation.by_name("elu")())
        self.child_arc_feedforward = copy.deepcopy(self.head_arc_feedforward)

        self.arc_attention = BilinearMatrixAttention(arc_representation_dim,
                                                     arc_representation_dim,
                                                     use_input_biases=True)

        num_labels = self.vocab.get_vocab_size("head_tags")

        self.head_tag_feedforward = tag_feedforward or \
                                        FeedForward(encoder_dim, 1,
                                                    tag_representation_dim,
                                                    Activation.by_name("elu")())
        self.child_tag_feedforward = copy.deepcopy(self.head_tag_feedforward)

        self.tag_bilinear = torch.nn.modules.Bilinear(tag_representation_dim,
                                                      tag_representation_dim,
                                                      num_labels)

        self._pos_tag_embedding = pos_tag_embedding or None
        self._dropout = InputVariationalDropout(dropout)
        self._input_dropout = Dropout(input_dropout)
        self._head_sentinel = torch.nn.Parameter(
            torch.randn([1, 1, encoder.get_output_dim()]))

        representation_dim = text_field_embedder.get_output_dim()
        if pos_tag_embedding is not None:
            representation_dim += pos_tag_embedding.get_output_dim()

        check_dimensions_match(representation_dim, encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")

        check_dimensions_match(tag_representation_dim,
                               self.head_tag_feedforward.get_output_dim(),
                               "tag representation dim",
                               "tag feedforward output dim")
        check_dimensions_match(arc_representation_dim,
                               self.head_arc_feedforward.get_output_dim(),
                               "arc representation dim",
                               "arc feedforward output dim")

        self.use_mst_decoding_for_validation = use_mst_decoding_for_validation

        tags = self.vocab.get_token_to_index_vocabulary("pos")
        punctuation_tag_indices = {
            tag: index
            for tag, index in tags.items() if tag in POS_TO_IGNORE
        }
        self._pos_to_ignore = set(punctuation_tag_indices.values())
        logger.info(
            f"Found POS tags correspoding to the following punctuation : {punctuation_tag_indices}. "
            "Ignoring words with these POS tags for evaluation.")

        self._attachment_scores = AttachmentScores()
        initializer(self)
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 embedding_dropout: float,
                 pre_encode_feedforward: FeedForward,
                 encoder: Seq2SeqEncoder,
                 integrator: Seq2SeqEncoder,
                 integrator_dropout: float,
                 output_layer: Union[FeedForward, Maxout],
                 elmo: Elmo,
                 use_input_elmo: bool = False,
                 use_integrator_output_elmo: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(BiattentiveClassificationNetwork, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        if "elmo" in self._text_field_embedder._token_embedders.keys():  # pylint: disable=protected-access
            raise ConfigurationError("To use ELMo in the BiattentiveClassificationNetwork input, "
                                     "remove elmo from the text_field_embedder and pass an "
                                     "Elmo object to the BiattentiveClassificationNetwork and set the "
                                     "'use_input_elmo' and 'use_integrator_output_elmo' flags accordingly.")
        self._embedding_dropout = nn.Dropout(embedding_dropout)
        self._num_classes = self.vocab.get_vocab_size("labels")

        self._pre_encode_feedforward = pre_encode_feedforward
        self._encoder = encoder
        self._integrator = integrator
        self._integrator_dropout = nn.Dropout(integrator_dropout)

        self._elmo = elmo
        self._use_input_elmo = use_input_elmo
        self._use_integrator_output_elmo = use_integrator_output_elmo
        self._num_elmo_layers = int(self._use_input_elmo) + int(self._use_integrator_output_elmo)
        # Check that, if elmo is None, none of the elmo flags are set.
        if self._elmo is None and self._num_elmo_layers != 0:
            raise ConfigurationError("One of 'use_input_elmo' or 'use_integrator_output_elmo' is True, "
                                     "but no Elmo object was provided upon construction. Pass in an Elmo "
                                     "object to use Elmo.")

        if self._elmo is not None:
            # Check that, if elmo is not None, we use it somewhere.
            if self._num_elmo_layers == 0:
                raise ConfigurationError("Elmo object provided upon construction, but both 'use_input_elmo' "
                                         "and 'use_integrator_output_elmo' are 'False'. Set one of them to "
                                         "'True' to use Elmo, or do not provide an Elmo object upon construction.")
            # Check that the number of flags set is equal to the num_output_representations of the Elmo object
            # pylint: disable=protected-access,too-many-format-args
            if len(self._elmo._scalar_mixes) != self._num_elmo_layers:
                raise ConfigurationError("Elmo object has num_output_representations=%s, but this does not "
                                         "match the number of use_*_elmo flags set to true. use_input_elmo "
                                         "is %s, and use_integrator_output_elmo is %s".format(
                                                 str(len(self._elmo._scalar_mixes)),
                                                 str(self._use_input_elmo),
                                                 str(self._use_integrator_output_elmo)))

        # Calculate combined integrator output dim, taking into account elmo
        if self._use_integrator_output_elmo:
            self._combined_integrator_output_dim = (self._integrator.get_output_dim() +
                                                    self._elmo.get_output_dim())
        else:
            self._combined_integrator_output_dim = self._integrator.get_output_dim()

        self._self_attentive_pooling_projection = nn.Linear(
                self._combined_integrator_output_dim, 1)
        self._output_layer = output_layer

        if self._use_input_elmo:
            check_dimensions_match(text_field_embedder.get_output_dim() +
                                   self._elmo.get_output_dim(),
                                   self._pre_encode_feedforward.get_input_dim(),
                                   "text field embedder output dim + ELMo output dim",
                                   "Pre-encoder feedforward input dim")
        else:
            check_dimensions_match(text_field_embedder.get_output_dim(),
                                   self._pre_encode_feedforward.get_input_dim(),
                                   "text field embedder output dim",
                                   "Pre-encoder feedforward input dim")

        check_dimensions_match(self._pre_encode_feedforward.get_output_dim(),
                               self._encoder.get_input_dim(),
                               "Pre-encoder feedforward output dim",
                               "Encoder input dim")
        check_dimensions_match(self._encoder.get_output_dim() * 3,
                               self._integrator.get_input_dim(),
                               "Encoder output dim * 3",
                               "Integrator input dim")
        if self._use_integrator_output_elmo:
            check_dimensions_match(self._combined_integrator_output_dim * 4,
                                   self._output_layer.get_input_dim(),
                                   "(Integrator output dim + ELMo output dim) * 4",
                                   "Output layer input dim")
        else:
            check_dimensions_match(self._integrator.get_output_dim() * 4,
                                   self._output_layer.get_input_dim(),
                                   "Integrator output dim * 4",
                                   "Output layer input dim")

        check_dimensions_match(self._output_layer.get_output_dim(),
                               self._num_classes,
                               "Output layer output dim",
                               "Number of classes.")

        self.metrics = {
                "accuracy": CategoricalAccuracy(),
                "accuracy3": CategoricalAccuracy(top_k=3)
        }
        self.loss = torch.nn.CrossEntropyLoss()
        initializer(self)
Exemple #12
0
    def __init__(self,
                 vocab: Vocabulary,
                 question_embedder: TextFieldEmbedder,
                 action_embedding_dim: int,
                 encoder: Seq2SeqEncoder,
                 entity_encoder: Seq2VecEncoder,
                 max_decoding_steps: int,
                 use_neighbor_similarity_for_linking: bool = False,
                 dropout: float = 0.0,
                 num_linking_features: int = 10,
                 rule_namespace: str = 'rule_labels',
                 tables_directory: str = '/wikitables/') -> None:
        super(WikiTablesSemanticParser, self).__init__(vocab)
        self._question_embedder = question_embedder
        self._encoder = encoder
        self._entity_encoder = TimeDistributed(entity_encoder)
        self._max_decoding_steps = max_decoding_steps
        self._use_neighbor_similarity_for_linking = use_neighbor_similarity_for_linking
        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
        self._rule_namespace = rule_namespace
        self._denotation_accuracy = WikiTablesAccuracy(tables_directory)
        self._action_sequence_accuracy = Average()
        self._has_logical_form = Average()

        self._action_padding_index = -1  # the padding value used by IndexField
        num_actions = vocab.get_vocab_size(self._rule_namespace)
        self._action_embedder = Embedding(num_embeddings=num_actions,
                                          embedding_dim=action_embedding_dim)
        self._output_action_embedder = Embedding(
            num_embeddings=num_actions, embedding_dim=action_embedding_dim)
        self._action_biases = Embedding(num_embeddings=num_actions,
                                        embedding_dim=1)

        # This is what we pass as input in the first step of decoding, when we don't have a
        # previous action, or a previous question attention.
        self._first_action_embedding = torch.nn.Parameter(
            torch.FloatTensor(action_embedding_dim))
        self._first_attended_question = torch.nn.Parameter(
            torch.FloatTensor(encoder.get_output_dim()))
        torch.nn.init.normal_(self._first_action_embedding)
        torch.nn.init.normal_(self._first_attended_question)

        check_dimensions_match(entity_encoder.get_output_dim(),
                               question_embedder.get_output_dim(),
                               "entity word average embedding dim",
                               "question embedding dim")

        self._num_entity_types = 4  # TODO(mattg): get this in a more principled way somehow?
        self._num_start_types = 5  # TODO(mattg): get this in a more principled way somehow?
        self._embedding_dim = question_embedder.get_output_dim()
        self._type_params = torch.nn.Linear(self._num_entity_types,
                                            self._embedding_dim)
        self._neighbor_params = torch.nn.Linear(self._embedding_dim,
                                                self._embedding_dim)

        if num_linking_features > 0:
            self._linking_params = torch.nn.Linear(num_linking_features, 1)
        else:
            self._linking_params = None

        if self._use_neighbor_similarity_for_linking:
            self._question_entity_params = torch.nn.Linear(1, 1)
            self._question_neighbor_params = torch.nn.Linear(1, 1)
        else:
            self._question_entity_params = None
            self._question_neighbor_params = None