def test_elmo_as_array_produces_token_sequence(self):  # pylint: disable=invalid-name
        indexer = ELMoTokenCharactersIndexer()
        tokens = [Token('Second'), Token('.')]
        indices = indexer.tokens_to_indices(tokens, Vocabulary(),
                                            "test-elmo")["test-elmo"]
        padded_tokens = indexer.pad_token_sequence(
            {'test-elmo': indices},
            desired_num_tokens={'test-elmo': 3},
            padding_lengths={})
        expected_padded_tokens = [
            [
                259, 84, 102, 100, 112, 111, 101, 260, 261, 261, 261, 261, 261,
                261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
                261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
                261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261
            ],
            [
                259, 47, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
                261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
                261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
                261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261
            ],
            [
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0
            ]
        ]

        assert padded_tokens['test-elmo'] == expected_padded_tokens
    def test_count_vocab_items_uses_pos_tags(self):
        tokens = self.tokenizer.split_words("This is a sentence.")
        tokens = [Token("<S>")] + [t for t in tokens] + [Token("</S>")]
        indexer = PosTagIndexer()
        counter = defaultdict(lambda: defaultdict(int))
        for token in tokens:
            indexer.count_vocab_items(token, counter)
        assert counter["pos_tags"] == {
            'DT': 2,
            'VBZ': 1,
            '.': 1,
            'NN': 1,
            'NONE': 2
        }

        indexer._coarse_tags = True  # pylint: disable=protected-access
        counter = defaultdict(lambda: defaultdict(int))
        for token in tokens:
            indexer.count_vocab_items(token, counter)
        assert counter["pos_tags"] == {
            'VERB': 1,
            'PUNCT': 1,
            'DET': 2,
            'NOUN': 1,
            'NONE': 2
        }
Exemple #3
0
    def test_index_converts_field_correctly(self):
        vocab = Vocabulary()
        sentence_index = vocab.add_token_to_namespace("sentence", namespace='words')
        capital_a_index = vocab.add_token_to_namespace("A", namespace='words')
        capital_a_char_index = vocab.add_token_to_namespace("A", namespace='characters')
        s_index = vocab.add_token_to_namespace("s", namespace='characters')
        e_index = vocab.add_token_to_namespace("e", namespace='characters')
        n_index = vocab.add_token_to_namespace("n", namespace='characters')
        t_index = vocab.add_token_to_namespace("t", namespace='characters')
        c_index = vocab.add_token_to_namespace("c", namespace='characters')

        field = TextField([Token(t) for t in ["A", "sentence"]],
                          {"words": SingleIdTokenIndexer(namespace="words")})
        field.index(vocab)
        # pylint: disable=protected-access
        assert field._indexed_tokens["words"] == [capital_a_index, sentence_index]

        field1 = TextField([Token(t) for t in ["A", "sentence"]],
                           {"characters": TokenCharactersIndexer(namespace="characters")})
        field1.index(vocab)
        assert field1._indexed_tokens["characters"] == [[capital_a_char_index],
                                                        [s_index, e_index, n_index, t_index,
                                                         e_index, n_index, c_index, e_index]]
        field2 = TextField([Token(t) for t in ["A", "sentence"]],
                           token_indexers={"words": SingleIdTokenIndexer(namespace="words"),
                                           "characters": TokenCharactersIndexer(namespace="characters")})
        field2.index(vocab)
        assert field2._indexed_tokens["words"] == [capital_a_index, sentence_index]
        assert field2._indexed_tokens["characters"] == [[capital_a_char_index],
                                                        [s_index, e_index, n_index, t_index,
                                                         e_index, n_index, c_index, e_index]]
Exemple #4
0
 def test_count_vocab_items_uses_ner_tags(self):
     tokens = self.tokenizer.split_words("Larry Page is CEO of Google.")
     tokens = [Token("<S>")] + [t for t in tokens] + [Token("</S>")]
     indexer = NerTagIndexer()
     counter = defaultdict(lambda: defaultdict(int))
     for token in tokens:
         indexer.count_vocab_items(token, counter)
     assert counter["ner_tags"] == {'PERSON': 2, 'ORG': 1, 'NONE': 6}
    def test_count_vocab_items_respects_casing(self):
        indexer = TokenCharactersIndexer("characters")
        counter = defaultdict(lambda: defaultdict(int))
        indexer.count_vocab_items(Token("Hello"), counter)
        indexer.count_vocab_items(Token("hello"), counter)
        assert counter["characters"] == {"h": 1, "H": 1, "e": 2, "l": 4, "o": 2}

        indexer = TokenCharactersIndexer("characters", CharacterTokenizer(lowercase_characters=True))
        counter = defaultdict(lambda: defaultdict(int))
        indexer.count_vocab_items(Token("Hello"), counter)
        indexer.count_vocab_items(Token("hello"), counter)
        assert counter["characters"] == {"h": 2, "e": 2, "l": 4, "o": 2}
    def test_count_vocab_items_respects_casing(self):
        indexer = SingleIdTokenIndexer("words")
        counter = defaultdict(lambda: defaultdict(int))
        indexer.count_vocab_items(Token("Hello"), counter)
        indexer.count_vocab_items(Token("hello"), counter)
        assert counter["words"] == {"hello": 1, "Hello": 1}

        indexer = SingleIdTokenIndexer("words", lowercase_tokens=True)
        counter = defaultdict(lambda: defaultdict(int))
        indexer.count_vocab_items(Token("Hello"), counter)
        indexer.count_vocab_items(Token("hello"), counter)
        assert counter["words"] == {"hello": 2}
Exemple #7
0
 def get_instances(self):
     field1 = TextField([Token(t) for t in ["this", "is", "a", "sentence", "."]],
                        self.token_indexer)
     field2 = TextField([Token(t) for t in ["this", "is", "a", "different", "sentence", "."]],
                        self.token_indexer)
     field3 = TextField([Token(t) for t in ["here", "is", "a", "sentence", "."]],
                        self.token_indexer)
     field4 = TextField([Token(t) for t in ["this", "is", "short"]],
                        self.token_indexer)
     instances = [Instance({"text1": field1, "text2": field2}),
                  Instance({"text1": field3, "text2": field4})]
     return instances
    def test_invalid_vocab_extension(self):
        vocab_dir = self.TEST_DIR / 'vocab_save'
        original_vocab = Vocabulary(non_padded_namespaces=["tokens1"])
        original_vocab.add_token_to_namespace("a", namespace="tokens1")
        original_vocab.add_token_to_namespace("b", namespace="tokens1")
        original_vocab.add_token_to_namespace("p", namespace="tokens2")
        original_vocab.save_to_files(vocab_dir)
        text_field1 = TextField([Token(t) for t in ["a" "c"]],
                                {"tokens1": SingleIdTokenIndexer("tokens1")})
        text_field2 = TextField([Token(t) for t in ["p", "q", "r"]],
                                {"tokens2": SingleIdTokenIndexer("tokens2")})
        instances = Batch([Instance({"text1": text_field1, "text2": text_field2})])

        # Following 2 should give error: token1 is non-padded in original_vocab but not in instances
        params = Params({"directory_path": vocab_dir, "extend": True,
                         "non_padded_namespaces": []})
        with pytest.raises(ConfigurationError):
            _ = Vocabulary.from_params(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            params = Params({"non_padded_namespaces": []})
            extended_vocab.extend_from_instances(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            extended_vocab._extend(non_padded_namespaces=[],
                                   tokens_to_add={"tokens1": ["a"], "tokens2": ["p"]})

        # Following 2 should not give error: overlapping namespaces have same padding setting
        params = Params({"directory_path": vocab_dir, "extend": True,
                         "non_padded_namespaces": ["tokens1"]})
        Vocabulary.from_params(params, instances)
        extended_vocab = copy.copy(original_vocab)
        params = Params({"non_padded_namespaces": ["tokens1"]})
        extended_vocab.extend_from_instances(params, instances)
        extended_vocab = copy.copy(original_vocab)
        extended_vocab._extend(non_padded_namespaces=["tokens1"],
                               tokens_to_add={"tokens1": ["a"], "tokens2": ["p"]})

        # Following 2 should give error: token1 is padded in instances but not in original_vocab
        params = Params({"directory_path": vocab_dir, "extend": True,
                         "non_padded_namespaces": ["tokens1", "tokens2"]})
        with pytest.raises(ConfigurationError):
            _ = Vocabulary.from_params(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            params = Params({"non_padded_namespaces": ["tokens1", "tokens2"]})
            extended_vocab.extend_from_instances(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            extended_vocab._extend(non_padded_namespaces=["tokens1", "tokens2"],
                                   tokens_to_add={"tokens1": ["a"], "tokens2": ["p"]})
Exemple #9
0
    def test_field_counts_vocab_items_correctly(self):
        field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                          token_indexers={"words": SingleIdTokenIndexer("words")})
        namespace_token_counts = defaultdict(lambda: defaultdict(int))
        field.count_vocab_items(namespace_token_counts)

        assert namespace_token_counts["words"]["This"] == 1
        assert namespace_token_counts["words"]["is"] == 1
        assert namespace_token_counts["words"]["a"] == 1
        assert namespace_token_counts["words"]["sentence"] == 1
        assert namespace_token_counts["words"]["."] == 1
        assert list(namespace_token_counts.keys()) == ["words"]

        field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                          token_indexers={"characters": TokenCharactersIndexer("characters")})
        namespace_token_counts = defaultdict(lambda: defaultdict(int))
        field.count_vocab_items(namespace_token_counts)

        assert namespace_token_counts["characters"]["T"] == 1
        assert namespace_token_counts["characters"]["h"] == 1
        assert namespace_token_counts["characters"]["i"] == 2
        assert namespace_token_counts["characters"]["s"] == 3
        assert namespace_token_counts["characters"]["a"] == 1
        assert namespace_token_counts["characters"]["e"] == 3
        assert namespace_token_counts["characters"]["n"] == 2
        assert namespace_token_counts["characters"]["t"] == 1
        assert namespace_token_counts["characters"]["c"] == 1
        assert namespace_token_counts["characters"]["."] == 1
        assert list(namespace_token_counts.keys()) == ["characters"]

        field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                          token_indexers={"words": SingleIdTokenIndexer("words"),
                                          "characters": TokenCharactersIndexer("characters")})
        namespace_token_counts = defaultdict(lambda: defaultdict(int))
        field.count_vocab_items(namespace_token_counts)
        assert namespace_token_counts["characters"]["T"] == 1
        assert namespace_token_counts["characters"]["h"] == 1
        assert namespace_token_counts["characters"]["i"] == 2
        assert namespace_token_counts["characters"]["s"] == 3
        assert namespace_token_counts["characters"]["a"] == 1
        assert namespace_token_counts["characters"]["e"] == 3
        assert namespace_token_counts["characters"]["n"] == 2
        assert namespace_token_counts["characters"]["t"] == 1
        assert namespace_token_counts["characters"]["c"] == 1
        assert namespace_token_counts["characters"]["."] == 1
        assert namespace_token_counts["words"]["This"] == 1
        assert namespace_token_counts["words"]["is"] == 1
        assert namespace_token_counts["words"]["a"] == 1
        assert namespace_token_counts["words"]["sentence"] == 1
        assert namespace_token_counts["words"]["."] == 1
        assert set(namespace_token_counts.keys()) == {"words", "characters"}
Exemple #10
0
    def test_read_from_json_handles_simple_cases(self):
        json = {
            'question': [Token(x) for x in ['where', 'is', 'mersin', '?']],
            'columns': ['Name in English', 'Location'],
            'cells': [['Paradeniz', 'Mersin'], ['Lake Gala', 'Edirne']]
        }
        graph = TableQuestionKnowledgeGraph.read_from_json(json)
        neighbors = set(graph.neighbors['fb:cell.mersin'])
        assert graph.entities == [
            '-1', '0', '1', 'fb:cell.edirne', 'fb:cell.lake_gala',
            'fb:cell.mersin', 'fb:cell.paradeniz', 'fb:row.row.location',
            'fb:row.row.name_in_english'
        ]
        assert neighbors == {'fb:row.row.location'}
        neighbors = set(graph.neighbors['fb:row.row.name_in_english'])
        assert neighbors == {'fb:cell.paradeniz', 'fb:cell.lake_gala'}
        assert graph.entity_text['fb:cell.edirne'] == 'Edirne'
        assert graph.entity_text['fb:cell.lake_gala'] == 'Lake Gala'
        assert graph.entity_text['fb:cell.mersin'] == 'Mersin'
        assert graph.entity_text['fb:cell.paradeniz'] == 'Paradeniz'
        assert graph.entity_text['fb:row.row.location'] == 'Location'
        assert graph.entity_text[
            'fb:row.row.name_in_english'] == 'Name in English'

        # These are default numbers that should always be in the graph.
        assert graph.neighbors['-1'] == []
        assert graph.neighbors['0'] == []
        assert graph.neighbors['1'] == []
        assert graph.entity_text['-1'] == '-1'
        assert graph.entity_text['0'] == '0'
        assert graph.entity_text['1'] == '1'
Exemple #11
0
    def test_count_vocab_items_uses_pos_tags(self):
        tokens = self.tokenizer.split_words("This is a sentence.")
        tokens = [Token("<S>")] + [t for t in tokens] + [Token("</S>")]
        indexer = DepLabelIndexer()
        counter = defaultdict(lambda: defaultdict(int))
        for token in tokens:
            indexer.count_vocab_items(token, counter)

        assert counter["dep_labels"] == {
            "ROOT": 1,
            "nsubj": 1,
            "det": 1,
            "NONE": 2,
            "attr": 1,
            "punct": 1
        }
Exemple #12
0
def batch_to_ids(batch: List[List[str]]) -> torch.Tensor:
    """
    Converts a batch of tokenized sentences to a tensor representing the sentences with encoded characters
    (len(batch), max sentence length, max word length).

    Parameters
    ----------
    batch : ``List[List[str]]``, required
        A list of tokenized sentences.

    Returns
    -------
        A tensor of padded character ids.
    """
    instances = []
    indexer = ELMoTokenCharactersIndexer()
    for sentence in batch:
        tokens = [Token(token) for token in sentence]
        field = TextField(tokens, {'character_ids': indexer})
        instance = Instance({"elmo": field})
        instances.append(instance)

    dataset = Batch(instances)
    vocab = Vocabulary()
    dataset.index_instances(vocab)
    return dataset.as_tensor_dict()['elmo']['character_ids']
 def setUp(self):
     token_indexer = SingleIdTokenIndexer("tokens")
     text_field = TextField([Token(t) for t in ["a", "a", "a", "a", "b", "b", "c", "c", "c"]],
                            {"tokens": token_indexer})
     self.instance = Instance({"text": text_field})
     self.dataset = Batch([self.instance])
     super(TestVocabulary, self).setUp()
Exemple #14
0
 def test_as_tensor_handles_words(self):
     field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                       token_indexers={"words": SingleIdTokenIndexer("words")})
     field.index(self.vocab)
     padding_lengths = field.get_padding_lengths()
     tensor_dict = field.as_tensor(padding_lengths)
     numpy.testing.assert_array_almost_equal(tensor_dict["words"].detach().cpu().numpy(),
                                             numpy.array([1, 1, 1, 2, 1]))
Exemple #15
0
    def test_bpe(self):

        # [e, w, o, e</w>] -> best pair (e, w)
        # [ew, o, e</w>] -> best pair (o, e</w>)
        # [ew, oe</w>] -> done
        token = Token("ewoe")
        assert self.indexer.byte_pair_encode(token) == ['ew', 'oe</w>']

        # Prefer "ew" to "we"
        token = Token("ewe")
        assert self.indexer.byte_pair_encode(token) == ['ew', 'e</w>']

        # Prefer ending a word
        token = Token("eee")
        assert self.indexer.byte_pair_encode(token) == ['e', 'ee</w>']

        # Encodes up to a single symbol when appropriate
        token = Token("woe")
        assert self.indexer.byte_pair_encode(token) == ['woe</w>']
Exemple #16
0
    def test_padding_lengths_are_computed_correctly(self):
        field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                          token_indexers={"words": SingleIdTokenIndexer("words")})
        field.index(self.vocab)
        padding_lengths = field.get_padding_lengths()
        assert padding_lengths == {"num_tokens": 5}

        field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                          token_indexers={"characters": TokenCharactersIndexer("characters")})
        field.index(self.vocab)
        padding_lengths = field.get_padding_lengths()
        assert padding_lengths == {"num_tokens": 5, "num_token_characters": 8}

        field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                          token_indexers={"characters": TokenCharactersIndexer("characters"),
                                          "words": SingleIdTokenIndexer("words")})
        field.index(self.vocab)
        padding_lengths = field.get_padding_lengths()
        assert padding_lengths == {"num_tokens": 5, "num_token_characters": 8}
Exemple #17
0
 def test_get_linked_agenda_items(self):
     json = {
         'question': [Token(x) for x in ['where', 'is', 'mersin', '?']],
         'columns': ['Name in English', 'Location'],
         'cells': [['Paradeniz', 'Mersin'], ['Lake Gala', 'Edirne']]
     }
     graph = TableQuestionKnowledgeGraph.read_from_json(json)
     assert graph.get_linked_agenda_items() == [
         'fb:cell.mersin', 'fb:row.row.location'
     ]
 def test_unicode_to_char_ids(self):
     indexer = ELMoTokenCharactersIndexer()
     indices = indexer.tokens_to_indices([Token(chr(256) + 't')],
                                         Vocabulary(), "test-unicode")
     expected_indices = [
         259, 197, 129, 117, 260, 261, 261, 261, 261, 261, 261, 261, 261,
         261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
         261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
         261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261
     ]
     assert indices == {"test-unicode": [expected_indices]}
 def test_bos_to_char_ids(self):
     indexer = ELMoTokenCharactersIndexer()
     indices = indexer.tokens_to_indices([Token('<S>')], Vocabulary(),
                                         "test-elmo")
     expected_indices = [
         259, 257, 260, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
         261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
         261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261,
         261, 261, 261, 261, 261, 261, 261, 261, 261, 261, 261
     ]
     assert indices == {"test-elmo": [expected_indices]}
Exemple #20
0
 def test_get_longest_span_matching_entities(self):
     json = {
         'question':
         [Token(x) for x in ['where', 'is', 'lake', 'big', 'gala', '?']],
         'columns': ['Name in English', 'Location'],
         'cells': [['Paradeniz', 'Lake Big'], ['Lake Big Gala', 'Edirne']]
     }
     graph = TableQuestionKnowledgeGraph.read_from_json(json)
     assert graph._get_longest_span_matching_entities() == [
         'fb:cell.lake_big_gala'
     ]
    def test_tokens_to_indices_produces_correct_characters(self):
        vocab = Vocabulary()
        vocab.add_token_to_namespace("A", namespace='characters')
        vocab.add_token_to_namespace("s", namespace='characters')
        vocab.add_token_to_namespace("e", namespace='characters')
        vocab.add_token_to_namespace("n", namespace='characters')
        vocab.add_token_to_namespace("t", namespace='characters')
        vocab.add_token_to_namespace("c", namespace='characters')

        indexer = TokenCharactersIndexer("characters")
        indices = indexer.tokens_to_indices([Token("sentential")], vocab, "char")
        assert indices == {"char": [[3, 4, 5, 6, 4, 5, 6, 1, 1, 1]]}
Exemple #22
0
 def test_as_tensor_handles_characters(self):
     field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]],
                       token_indexers={"characters": TokenCharactersIndexer("characters")})
     field.index(self.vocab)
     padding_lengths = field.get_padding_lengths()
     tensor_dict = field.as_tensor(padding_lengths)
     expected_character_array = numpy.array([[1, 1, 1, 3, 0, 0, 0, 0],
                                             [1, 3, 0, 0, 0, 0, 0, 0],
                                             [1, 0, 0, 0, 0, 0, 0, 0],
                                             [3, 4, 5, 6, 4, 5, 7, 4],
                                             [1, 0, 0, 0, 0, 0, 0, 0]])
     numpy.testing.assert_array_almost_equal(tensor_dict["characters"].detach().cpu().numpy(),
                                             expected_character_array)
Exemple #23
0
    def test_tokens_to_indices(self):
        tokens = [Token('ewoe'), Token('woe'), Token('ewe'), Token('ee')]

        indices = self.indexer.tokens_to_indices(tokens, None, 'test')

        assert set(indices.keys()) == {"test", "test-offsets", "mask"}

        text_tokens = indices['test']
        offsets = indices['test-offsets']

        assert text_tokens[:6] == [
            self.indexer.encoder.get(symbol, 0)
            for symbol in ['ew', 'oe</w>'] + ['woe</w>'] + ['ew', 'e</w>'] +
            ['ee</w>']
        ]

        assert offsets == [
            1,  # end of first word
            2,  # end of second word
            4,  # end of third word
            5,  # end of last word
        ]
Exemple #24
0
 def test_read_from_json_handles_numbers_in_question(self):
     # The TSV file we use has newlines converted to "\n", not actual escape characters.  We
     # need to be sure we catch this.
     json = {
         'question': [Token(x) for x in ['one', '4']],
         'columns': [],
         'cells': []
     }
     graph = TableQuestionKnowledgeGraph.read_from_json(json)
     assert graph.neighbors['1'] == []
     assert graph.neighbors['4'] == []
     assert graph.entity_text['1'] == 'one'
     assert graph.entity_text['4'] == '4'
    def setUp(self):
        self.vocab = Vocabulary()
        self.vocab.add_token_to_namespace("this", "words")
        self.vocab.add_token_to_namespace("is", "words")
        self.vocab.add_token_to_namespace("a", "words")
        self.vocab.add_token_to_namespace("sentence", 'words')
        self.vocab.add_token_to_namespace("s", 'characters')
        self.vocab.add_token_to_namespace("e", 'characters')
        self.vocab.add_token_to_namespace("n", 'characters')
        self.vocab.add_token_to_namespace("t", 'characters')
        self.vocab.add_token_to_namespace("c", 'characters')
        for label in ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']:
            self.vocab.add_token_to_namespace(label, 'labels')

        self.word_indexer = {"words": SingleIdTokenIndexer("words")}
        self.words_and_characters_indexers = {
            "words": SingleIdTokenIndexer("words"),
            "characters": TokenCharactersIndexer("characters")
        }
        self.field1 = TextField(
            [Token(t) for t in ["this", "is", "a", "sentence"]],
            self.word_indexer)
        self.field2 = TextField(
            [Token(t) for t in ["this", "is", "a", "different", "sentence"]],
            self.word_indexer)
        self.field3 = TextField(
            [Token(t) for t in ["this", "is", "another", "sentence"]],
            self.word_indexer)

        self.empty_text_field = self.field1.empty_field()
        self.index_field = IndexField(1, self.field1)
        self.empty_index_field = self.index_field.empty_field()
        self.sequence_label_field = SequenceLabelField([1, 1, 0, 1],
                                                       self.field1)
        self.empty_sequence_label_field = self.sequence_label_field.empty_field(
        )

        super(TestListField, self).setUp()
Exemple #26
0
    def _sentences_to_ids(self, sentences):
        indexer = ELMoTokenCharactersIndexer()

        # For each sentence, first create a TextField, then create an instance
        instances = []
        for sentence in sentences:
            tokens = [Token(token) for token in sentence]
            field = TextField(tokens, {'character_ids': indexer})
            instance = Instance({'elmo': field})
            instances.append(instance)

        dataset = Batch(instances)
        vocab = Vocabulary()
        dataset.index_instances(vocab)
        return dataset.as_tensor_dict()['elmo']['character_ids']
    def test_max_vocab_size_partial_dict(self):
        indexers = {"tokens": SingleIdTokenIndexer(), "token_characters": TokenCharactersIndexer()}
        instance = Instance({
                'text': TextField([Token(w) for w in 'Abc def ghi jkl mno pqr stu vwx yz'.split(' ')], indexers)
        })
        dataset = Batch([instance])
        params = Params({
                "max_vocab_size": {
                        "tokens": 1
                }
        })

        vocab = Vocabulary.from_params(params=params, instances=dataset)
        assert len(vocab.get_index_to_token_vocabulary("tokens").values()) == 3 # 1 + 2
        assert len(vocab.get_index_to_token_vocabulary("token_characters").values()) == 28 # 26 + 2
Exemple #28
0
    def test_elmo_token_representation_bos_eos(self):
        # The additional <S> and </S> embeddings added by the embedder should be as expected.
        indexer = ELMoTokenCharactersIndexer()

        elmo_token_embedder = _ElmoCharacterEncoder(self.options_file,
                                                    self.weight_file)

        for correct_index, token in [[0, '<S>'], [2, '</S>']]:
            indices = indexer.tokens_to_indices([Token(token)], Vocabulary(),
                                                "correct")
            indices = torch.from_numpy(numpy.array(indices["correct"])).view(
                1, 1, -1)
            embeddings = elmo_token_embedder(indices)['token_embedding']
            assert numpy.allclose(embeddings[0, correct_index, :].data.numpy(),
                                  embeddings[0, 1, :].data.numpy())
Exemple #29
0
 def test_tokens_to_indices_uses_ner_tags(self):
     tokens = self.tokenizer.split_words("Larry Page is CEO of Google.")
     tokens = [t for t in tokens] + [Token("</S>")]
     vocab = Vocabulary()
     person_index = vocab.add_token_to_namespace('PERSON',
                                                 namespace='ner_tags')
     none_index = vocab.add_token_to_namespace('NONE', namespace='ner_tags')
     vocab.add_token_to_namespace('ORG', namespace='ner_tags')
     indexer = NerTagIndexer()
     assert indexer.tokens_to_indices([tokens[1]], vocab, "tokens1") == {
         "tokens1": [person_index]
     }
     assert indexer.tokens_to_indices([tokens[-1]], vocab, "tokens-1") == {
         "tokens-1": [none_index]
     }
Exemple #30
0
 def test_tokens_to_indices_uses_pos_tags(self):
     tokens = self.tokenizer.split_words("This is a sentence.")
     tokens = [t for t in tokens] + [Token("</S>")]
     vocab = Vocabulary()
     root_index = vocab.add_token_to_namespace('ROOT',
                                               namespace='dep_labels')
     none_index = vocab.add_token_to_namespace('NONE',
                                               namespace='dep_labels')
     indexer = DepLabelIndexer()
     assert indexer.tokens_to_indices([tokens[1]], vocab, "tokens1") == {
         "tokens1": [root_index]
     }
     assert indexer.tokens_to_indices([tokens[-1]], vocab, "tokens-1") == {
         "tokens-1": [none_index]
     }