def test_shuffle_mixed_dimension(self): # Test for trac ticket #2074 for t in [[1, 2, 3, None], [(1, 1), (2, 2), (3, 3), None], [1, (2, 2), (3, 3), None], [(1, 1), 2, 3, None]]: mt19937.seed(12345) shuffled = list(t) mt19937.shuffle(shuffled) assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
def test_call_within_srs(self): # Check that custom RandomState does not call into global state m = mt19937.RandomState() res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) for i in range(3): mt19937.seed(i) m.seed(4321) # If m.state is not honored, the result will change assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res)
def test_choice_sum_of_probs_tolerance(self): # The sum of probs should be 1.0 with some tolerance. # For low precision dtypes the tolerance was too tight. # See numpy github issue 6123. mt19937.seed(1234) a = [1, 2, 3] counts = [4, 4, 2] for dt in np.float16, np.float32, np.float64: probs = np.array(counts, dtype=dt) / sum(counts) c = mt19937.choice(a, p=probs) assert_(c in a) assert_raises(ValueError, mt19937.choice, a, p=probs * 0.9)
def test_shuffle_of_array_of_objects(self): # Test that permuting an array of objects will not cause # a segfault on garbage collection. # See gh-7719 mt19937.seed(1234) a = np.array([np.arange(1), np.arange(4)]) for _ in range(1000): mt19937.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
def test_shuffle_of_array_of_different_length_strings(self): # Test that permuting an array of different length strings # will not cause a segfault on garbage collection # Tests gh-7710 mt19937.seed(1234) a = np.array(['a', 'a' * 1000]) for _ in range(100): mt19937.shuffle(a) # Force Garbage Collection - should not segfault. import gc gc.collect()
def test_logseries_convergence(self): # Test for ticket #923 N = 1000 mt19937.seed(0) rvsn = mt19937.logseries(0.8, size=N) # these two frequency counts should be close to theoretical # numbers with this large sample # theoretical large N result is 0.49706795 freq = np.sum(rvsn == 1) / float(N) msg = "Frequency was %f, should be > 0.45" % freq assert_(freq > 0.45, msg) # theoretical large N result is 0.19882718 freq = np.sum(rvsn == 2) / float(N) msg = "Frequency was %f, should be < 0.23" % freq assert_(freq < 0.23, msg)
def test_beta_small_parameters(self): # Test that beta with small a and b parameters does not produce # NaNs due to roundoff errors causing 0 / 0, gh-5851 mt19937.seed(1234567890) x = mt19937.beta(0.0001, 0.0001, size=100) assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
def test_permutation_longs(self): mt19937.seed(1234) a = mt19937.permutation(12) mt19937.seed(1234) b = mt19937.permutation(long(12)) assert_array_equal(a, b)