def test_shuffle_mixed_dimension(self):
     # Test for trac ticket #2074
     for t in [[1, 2, 3, None], [(1, 1), (2, 2), (3, 3), None],
               [1, (2, 2), (3, 3), None], [(1, 1), 2, 3, None]]:
         mt19937.seed(12345)
         shuffled = list(t)
         mt19937.shuffle(shuffled)
         assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
 def test_call_within_srs(self):
     # Check that custom RandomState does not call into global state
     m = mt19937.RandomState()
     res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
     for i in range(3):
         mt19937.seed(i)
         m.seed(4321)
         # If m.state is not honored, the result will change
         assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res)
 def test_choice_sum_of_probs_tolerance(self):
     # The sum of probs should be 1.0 with some tolerance.
     # For low precision dtypes the tolerance was too tight.
     # See numpy github issue 6123.
     mt19937.seed(1234)
     a = [1, 2, 3]
     counts = [4, 4, 2]
     for dt in np.float16, np.float32, np.float64:
         probs = np.array(counts, dtype=dt) / sum(counts)
         c = mt19937.choice(a, p=probs)
         assert_(c in a)
         assert_raises(ValueError, mt19937.choice, a, p=probs * 0.9)
    def test_shuffle_of_array_of_objects(self):
        # Test that permuting an array of objects will not cause
        # a segfault on garbage collection.
        # See gh-7719
        mt19937.seed(1234)
        a = np.array([np.arange(1), np.arange(4)])

        for _ in range(1000):
            mt19937.shuffle(a)

        # Force Garbage Collection - should not segfault.
        import gc
        gc.collect()
    def test_shuffle_of_array_of_different_length_strings(self):
        # Test that permuting an array of different length strings
        # will not cause a segfault on garbage collection
        # Tests gh-7710
        mt19937.seed(1234)

        a = np.array(['a', 'a' * 1000])

        for _ in range(100):
            mt19937.shuffle(a)

        # Force Garbage Collection - should not segfault.
        import gc
        gc.collect()
 def test_logseries_convergence(self):
     # Test for ticket #923
     N = 1000
     mt19937.seed(0)
     rvsn = mt19937.logseries(0.8, size=N)
     # these two frequency counts should be close to theoretical
     # numbers with this large sample
     # theoretical large N result is 0.49706795
     freq = np.sum(rvsn == 1) / float(N)
     msg = "Frequency was %f, should be > 0.45" % freq
     assert_(freq > 0.45, msg)
     # theoretical large N result is 0.19882718
     freq = np.sum(rvsn == 2) / float(N)
     msg = "Frequency was %f, should be < 0.23" % freq
     assert_(freq < 0.23, msg)
 def test_beta_small_parameters(self):
     # Test that beta with small a and b parameters does not produce
     # NaNs due to roundoff errors causing 0 / 0, gh-5851
     mt19937.seed(1234567890)
     x = mt19937.beta(0.0001, 0.0001, size=100)
     assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
 def test_permutation_longs(self):
     mt19937.seed(1234)
     a = mt19937.permutation(12)
     mt19937.seed(1234)
     b = mt19937.permutation(long(12))
     assert_array_equal(a, b)