Exemple #1
0
 def bid(self,**kwargs):
     pricePrediction = kwargs.get('pricePrediction', self.pricePrediction)
     
     bundles         = kwargs.get('bundles', self.listBundles())
     
     revenue         = kwargs.get('revenue', listRevenue(bundles, self.v, self.l))
     
     verbose         = kwargs.get('verbose', False)
     
     initStrategy    = kwargs.get('initStrategy', self.initStrategy)
     
     maxItr          = kwargs.get('maxItr', self.maxItr)
     
     tol             = kwargs.get('tol', self.tol)
     
     verbose         = kwargs.get('verbose', self.verbose)
     
     ret             = kwargs.get('ret', self.ret)
     
     nsamples        = kwargs.get('nsamples', self.nsamples)
     
     initBids        = kwargs.get('initBids',initStrategy(bundles, revenue, pricePrediction))
     
     samples         = pricePrediction.sample(n_samples = nsamples)
     
     return jointLocalStrategy(bundles, revenue, initBids, samples, maxItr, tol, verbose, ret)          
Exemple #2
0
 def bid(self, **kwargs):
     pricePrediction = kwargs.get('pricePrediction',self.pricePrediction)
     
     bundles = kwargs.get('bundles', self.listBundles())
     
     revenue = kwargs.get('revenue',
                            listRevenue(bundles, self.v, self.l))
                           
     return straightMV_(bundles = bundles, 
                     revenue = revenue, 
                     pricePrediction = pricePrediction)
def localSearchDominance(nbids = 100, n_samples = 1000, rootDir = ".",
                         scppFile = None, vfile = None, lfile = None,
                         njs = 1000, nms = 1000):
         
    scppFile = os.path.realpath(scppFile)                
    with open(scppFile,'r') as f:
        scpp = pickle.load(f)
        
    m = scpp.m()
    
    bundles = listBundles(m)
    
    
    
    rootDir = os.path.realpath(rootDir)
    oDir = os.path.join(rootDir,timestamp_())
    if not os.path.exists(oDir):
        os.makedirs(oDir)
        
    table = [["parameter", "value"]]
    table.append(["nbids", nbids])
    table.append(["n_samples",n_samples])
    table.append(["m",m])
    table.append(["njs",njs])
    table.append(["nms",nms])
    table.append(["vfile",vfile])
    table.append(["lfile",lfile])
    table.append(["sccpFile", scppFile])
    
    
    
    pprint_table(sys.stdout,table)
    
    with open(os.path.join(oDir,'params.txt'),'a') as f:
        pprint_table(f,table)
    
    jointBidFile = os.path.join(oDir,"jointLocalBids.txt")
    condBidFile = os.path.join(oDir,"condLocalBids.txt")
    margBidFile = os.path.join(oDir,"margLocalBids.txt")
    
    useExternalValuations = False
    if vfile == None and lfile == None:
        vfile = os.path.join(oDir,'v.txt')
        lfile = os.path.join(oDir,'l.txt')
    else:
        vmat = numpy.loadtxt(vfile)
        lmat = numpy.loadtxt(lfile)
        nbids = lmat.shape[0]
        useExternalValuations = True
        
    surplusSamples = scpp.sample(n_samples = n_samples)
    numpy.savetxt(os.path.join(oDir,'ppSamples.txt'),surplusSamples)
    
    jsdir = os.path.join(oDir,'jointSamples')
    if not os.path.exists(jsdir):
        os.makedirs(jsdir)
        
    msdir = os.path.join(oDir,'margSamples')
    if not os.path.exists(msdir):
        os.makedirs(msdir)
    
    es = numpy.zeros((nbids,3))
    for i in xrange(nbids):
        print 'Bid number {0}'.format(i)
        
        if useExternalValuations:
            v = vmat[i,:]
            l = lmat[i]
            
        else:
            print 'randomizing valuation'
            v,l = randomValueVector(m=m)    
            with open(vfile,'a') as f:
                numpy.savetxt(f, v.reshape(1,v.shape[0]))
#                print >> f, v
            with open(lfile,'a') as f:
                numpy.savetxt(f,numpy.atleast_1d(l))
        
        print 'v = {0}'.format(v)
        print 'l = {0}'.format(l)
        
        revenue = listRevenue(bundles, v, l)
        bundleRevenueDict = {}
        for b, r in zip(bundles,revenue):
            bundleRevenueDict[tuple(b)] = r
        
        jointSamples = scpp.sample(n_samples = njs)
        margSamples = scpp.sampleMarg(n_samples = nms)
        
        numpy.savetxt(
            os.path.join(jsdir,'jointSamples_{0:04}.txt'.format(i)),
                jointSamples)
        
        numpy.savetxt(
            os.path.join(msdir,'margSamples_{0:04}.txt'.format(i)),
                margSamples)
        
        initBid = straightMUa(bundles, revenue, scpp)
    
        jbid = jointLocal(bundles,revenue,initBid,jointSamples)
        cbid = condLocal(bundles, revenue, initBid, jointSamples)
        mbid = margLocal(bundles, revenue, initBid, margSamples)
        
        with open(jointBidFile,'a') as f:
            numpy.savetxt(f, jbid.T)
        
        with open(condBidFile,'a') as f:
            numpy.savetxt(f, cbid.T)
        
        with open(margBidFile,'a') as f:
            numpy.savetxt(f, mbid.T)
            
        es[i,0] = expectedSurplus_(bundleRevenueDict, jbid, surplusSamples)
        es[i,1] = expectedSurplus_(bundleRevenueDict, cbid, surplusSamples)   
        es[i,2] = expectedSurplus_(bundleRevenueDict, mbid, surplusSamples)
        
        with open(os.path.join(oDir,"jointLocalExpectedSurplus.txt"),'a') as f:
            numpy.savetxt(f,numpy.atleast_1d(es[i,0]))
            
        with open(os.path.join(oDir,"condLocalExpectedSurplus.txt"),'a') as f:
            numpy.savetxt(f,numpy.atleast_1d(es[i,1])) 
        
        with open(os.path.join(oDir,"margLocalExpectedSurplus.txt"),'a') as f:
            numpy.savetxt(f,numpy.atleast_1d(es[i,2])) 
        
    jmean = numpy.mean(es[:,0])
    jvar  = numpy.var(es[:,0])
    cmean = numpy.mean(es[:,1])
    cvar  = numpy.var(es[:,1])
    mmean = numpy.mean(es[:,2])
    mvar  = numpy.var(es[:,2])
    
    print 'jointLocal Expected Surplus Mean {0}'.format(jmean)
    print 'jointLocal Expected Surplus Variance {0}'.format(jvar)
    print 'condLocal Expected Surplus Mean {0}'.format(cmean)
    print 'condLocal Expected Surplus Variance {0}'.format(cvar)
    print 'margLocal Expected Surplus Mean {0}'.format(mmean)
    print 'margLocal Expected Surplus Variance {0}'.format(mvar)
    
    with open(os.path.join(oDir,'jointLocalStats.txt'),'a') as f:
        print >> f, 'mean ', jmean
        print >> f, 'var ', jvar
        
    with open(os.path.join(oDir,'condLocalStats.txt'),'a') as f:
        print >> f, 'mean ', cmean
        print >> f, 'var ', cvar
        
    with open(os.path.join(oDir,'margLocalStats.txt'),'a') as f:
        print >> f, 'mean ', mmean
        print >> f, 'var ', mvar
        
    with open(os.path.join(oDir,'stats.txt'),'a') as f:
        print >> f, 'jointLocal expected surplus mean: {0}'.format(jmean)
        print >> f, 'jointLocal expected surplus variation: {0}'.format(jvar)
        print >> f, 'condLocal expected surplus mean: {0}'.format(cmean)
        print >> f, 'condLocal expected surplus variation: {0}'.format(cvar)
        print >> f, 'margLocal expected surplus mean: {0}'.format(mmean)
        print >> f, 'margLocal expected surplus variation: {0}'.format(mvar)
        
        
    bins = range(int(es.min())-1, int(es.max())+1)
    
    jhist, jbins = numpy.histogram(es[:,0], bins, normed = True)
    chist, cbins = numpy.histogram(es[:,1], bins, normed = True)
    mhist, mbins = numpy.histogram(es[:,2], bins, normed = True)
    
    f,ax = plt.subplots(3,1, sharex = True)
    ax[0].bar( (jbins[:-1]+jbins[1:])/2, jhist, align = 'center')
    ax[0].set_title('jointLocal expected surplus')
    ax[1].bar( (cbins[:-1]+cbins[1:])/2, chist, align = 'center' )
    ax[1].set_title('condLocal expected surplus')
    ax[2].bar( (mbins[:-1]+mbins[1:])/2, mhist, align = 'center')
    ax[2].set_title('margLocal expected surplus')
    
    plt.savefig(os.path.join(oDir,'expectedSurplus.pdf'))
Exemple #4
0
def targetPrice64(bundles, revenue, pricePrediction, verbose = False):
    samples = pricePrediction.sample(n_samples = 64)
    
    expectedPrices = numpy.mean(samples,0)
    
    return targetPrice(bundles, revenue, expectedPrices, verbose)

def targetPrice256(bundles, revenue, pricePrediction, verbose = False):
    samples = pricePrediction.sample(n_samples = 256)
    
    expectedPrices = numpy.mean(samples,0)
    
    return targetPrice(bundles, revenue, expectedPrices, verbose)
if __name__ == "__main__":
    from ssapy.util import listBundles
    from ssapy.agents.marketSchedule import listRevenue
    
    pp = [5,5]
    l = 1
    v = [20,10]
    bundles = listBundles(2)
    rev = listRevenue(bundles, v, l)
    
    print bundles
    print rev
    
    bid = targetPrice(bundles,rev,pp,True)
        
    
    
Exemple #5
0
    n_goods = bundles.shape[1]
    bid = numpy.zeros(n_goods, dtype = numpy.float)
    
    for goodIdx, good in enumerate(optBundle):
        if good:
            bid[goodIdx] = marginalUtility(bundles, valuation, 
                                           pricePrediction, goodIdx)
            
    if verbose:
        print "bid = {0}".format(bid)
        
    return bid

if __name__ == "__main__":
    from ssapy.agents.marketSchedule import listRevenue
    
    pp = [5,5]
    
    bundles = listBundles(2)
    
    l = 1
    v = [20, 10]
    
    valuation = listRevenue(bundles, v, l)
    
    print bundles
    print valuation
    
    bid = targetMV(bundles, valuation, pp, True)