def show_gtbs(base_dir, test_files, global_gtbs, num_classes, cols=1, figsize=(12, 8), font_size=12): orig_images = [] orig_gtbs = [] for file in test_files: img = load_img(base_dir + file) orig_images.append(img) gtbs = global_gtbs[file].copy() # get rid of is_difficult col (the last one) gtbs = gtbs[:, :-1] orig_gtbs.append(gtbs) show_predictions(orig_images, orig_gtbs, num_classes, cols=cols, conf_threshold=None, figsize=figsize, font_size=font_size)
def get(self, img_name): for img_dir in self.img_dirs: img_full_path = os.path.join(img_dir, img_name) if os.path.exists(img_full_path): img = imaging.load_img(img_full_path).astype(np.float32) return img raise ValueError("No {} exists in dirs {}".format( img_name, self.img_dirs))
def make_prediction(model, target_img_size, base_dir, test_files): orig_images = [] preprocessed_images = [] for file in test_files: img = load_img(base_dir + file) orig_images.append(img) preprocessed_images.append(preprocess_img(img, target_img_size)) preprocessed_images = np.array(preprocessed_images) y_pred = model.predict(preprocessed_images) return orig_images, preprocessed_images, y_pred
def images_to_hdf5(img_dir, hdf5_path, img_files=None, target_img_size=None): # datasets/voc/VOCtrainval_06-Nov-2007/JPEGImages if not img_files: img_files = os.listdir(img_dir) print("Found '{}' files in dir '{}'".format(len(img_files), img_dir)) with h5py.File(hdf5_path, mode='w') as hdf5_file: for img_file in img_files: img_full_path = os.path.join(img_dir, img_file) img = imaging.load_img(img_full_path) if target_img_size: img = imaging.resize_img(img, target_img_size) hdf5_file[img_file] = img.astype(np.uint8)
def images_to_pickle(img_dir, pickle_path, img_files=None, target_img_size=None): # datasets/voc/VOCtrainval_06-Nov-2007/JPEGImages if not img_files: img_files = os.listdir(img_dir) print("Found '{}' files in dir '{}'".format(len(img_files), img_dir)) with open(pickle_path, 'wb') as f: data = {} for img_file in img_files: img_full_path = os.path.join(img_dir, img_file) img = imaging.load_img(img_full_path) if target_img_size: img = imaging.resize_img(img, target_img_size) data[img_file] = img.astype(np.uint8) pickle.dump(data, f)