def learn(self,
              total_timesteps,
              callback=None,
              log_interval=1,
              tb_log_name="PPO2",
              reset_num_timesteps=True):
        # Transform to callable if needed
        self.learning_rate = get_schedule_fn(self.learning_rate)
        self.cliprange = get_schedule_fn(self.cliprange)
        cliprange_vf = get_schedule_fn(self.cliprange_vf)

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()

            t_first_start = time.time()
            n_updates = total_timesteps // self.n_batch

            callback.on_training_start(locals(), globals())

            for update in range(1, n_updates + 1):
                assert self.n_batch % self.nminibatches == 0, (
                    "The number of minibatches (`nminibatches`) "
                    "is not a factor of the total number of samples "
                    "collected per rollout (`n_batch`), "
                    "some samples won't be used.")
                batch_size = self.n_batch // self.nminibatches
                t_start = time.time()
                frac = 1.0 - (update - 1.0) / n_updates
                lr_now = self.learning_rate(frac)
                cliprange_now = self.cliprange(frac)
                cliprange_vf_now = cliprange_vf(frac)

                callback.on_rollout_start()
                # true_reward is the reward without discount
                rollout = self.runner.run(callback)
                # Unpack
                obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = rollout

                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                mb_loss_vals = []
                if states is None:  # nonrecurrent version
                    update_fac = max(
                        self.n_batch // self.nminibatches // self.noptepochs,
                        1)
                    inds = np.arange(self.n_batch)
                    for epoch_num in range(self.noptepochs):
                        np.random.shuffle(inds)
                        for start in range(0, self.n_batch, batch_size):
                            timestep = self.num_timesteps // update_fac + (
                                (epoch_num * self.n_batch + start) //
                                batch_size)
                            end = start + batch_size
                            mbinds = inds[start:end]
                            slices = (arr[mbinds]
                                      for arr in (obs, returns, masks, actions,
                                                  values, neglogpacs))
                            mb_loss_vals.append(
                                self._train_step(
                                    lr_now,
                                    cliprange_now,
                                    *slices,
                                    writer=writer,
                                    update=timestep,
                                    cliprange_vf=cliprange_vf_now))
                else:  # recurrent version
                    update_fac = max(
                        self.n_batch // self.nminibatches // self.noptepochs //
                        self.n_steps, 1)
                    assert self.n_envs % self.nminibatches == 0
                    env_indices = np.arange(self.n_envs)
                    flat_indices = np.arange(self.n_envs *
                                             self.n_steps).reshape(
                                                 self.n_envs, self.n_steps)
                    envs_per_batch = batch_size // self.n_steps
                    for epoch_num in range(self.noptepochs):
                        np.random.shuffle(env_indices)
                        for start in range(0, self.n_envs, envs_per_batch):
                            timestep = self.num_timesteps // update_fac + (
                                (epoch_num * self.n_envs + start) //
                                envs_per_batch)
                            end = start + envs_per_batch
                            mb_env_inds = env_indices[start:end]
                            mb_flat_inds = flat_indices[mb_env_inds].ravel()
                            slices = (arr[mb_flat_inds]
                                      for arr in (obs, returns, masks, actions,
                                                  values, neglogpacs))
                            mb_states = states[mb_env_inds]
                            mb_loss_vals.append(
                                self._train_step(
                                    lr_now,
                                    cliprange_now,
                                    *slices,
                                    update=timestep,
                                    writer=writer,
                                    states=mb_states,
                                    cliprange_vf=cliprange_vf_now))

                loss_vals = np.mean(mb_loss_vals, axis=0)
                t_now = time.time()
                fps = int(self.n_batch / (t_now - t_start))

                if writer is not None:
                    total_episode_reward_logger(
                        self.episode_reward,
                        true_reward.reshape((self.n_envs, self.n_steps)),
                        masks.reshape((self.n_envs, self.n_steps)), writer,
                        self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0
                                          or update == 1):
                    explained_var = explained_variance(values, returns)
                    logger.logkv("serial_timesteps", update * self.n_steps)
                    logger.logkv("n_updates", update)
                    logger.logkv("total_timesteps", self.num_timesteps)
                    logger.logkv("fps", fps)
                    logger.logkv("explained_variance", float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_reward_mean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'ep_len_mean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.logkv('time_elapsed', t_start - t_first_start)
                    for (loss_val, loss_name) in zip(loss_vals,
                                                     self.loss_names):
                        logger.logkv(loss_name, loss_val)
                    logger.dumpkvs()

            callback.on_training_end()
            return self
Exemple #2
0
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=4,
              tb_log_name="SAC",
              reset_num_timesteps=True,
              replay_wrapper=None):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        if replay_wrapper is not None:
            self.replay_buffer = replay_wrapper(self.replay_buffer)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:

            self._setup_learn()

            # Transform to callable if needed
            self.learning_rate = get_schedule_fn(self.learning_rate)
            # Initial learning rate
            current_lr = self.learning_rate(1)

            start_time = time.time()
            episode_rewards = [0.0]
            episode_successes = []
            if self.action_noise is not None:
                self.action_noise.reset()
            obs = self.env.reset()
            # Retrieve unnormalized observation for saving into the buffer
            if self._vec_normalize_env is not None:
                obs_ = self._vec_normalize_env.get_original_obs().squeeze()

            n_updates = 0
            infos_values = []

            callback.on_training_start(locals(), globals())
            callback.on_rollout_start()

            for step in range(total_timesteps):
                # Before training starts, randomly sample actions
                # from a uniform distribution for better exploration.
                # Afterwards, use the learned policy
                # if random_exploration is set to 0 (normal setting)
                if self.num_timesteps < self.learning_starts:
                    # actions sampled from action space are from range specific to the environment
                    # but algorithm operates on tanh-squashed actions therefore simple scaling is used
                    unscaled_action = self.env.action_space.sample()
                    action = scale_action(self.action_space, unscaled_action)
                    unscaled_action *= 0
                    action *= 0
                elif np.random.rand() < self.random_exploration:
                    unscaled_action = self.env.action_space.sample()
                    action = scale_action(self.action_space, unscaled_action)
                else:
                    action = self.policy_tf.step(
                        obs[None], deterministic=False).flatten()
                    # Add noise to the action (improve exploration,
                    # not needed in general)
                    if self.action_noise is not None:
                        action = np.clip(action + self.action_noise(), -1, 1)
                    # inferred actions need to be transformed to environment action_space before stepping
                    unscaled_action = unscale_action(self.action_space, action)

                assert action.shape == self.env.action_space.shape

                new_obs, reward, done, info = self.env.step(unscaled_action)

                self.num_timesteps += 1

                # Only stop training if return value is False, not when it is None. This is for backwards
                # compatibility with callbacks that have no return statement.
                if callback.on_step() is False:
                    break

                # Store only the unnormalized version
                if self._vec_normalize_env is not None:
                    new_obs_ = self._vec_normalize_env.get_original_obs(
                    ).squeeze()
                    reward_ = self._vec_normalize_env.get_original_reward(
                    ).squeeze()
                else:
                    # Avoid changing the original ones
                    obs_, new_obs_, reward_ = obs, new_obs, reward

                # Store transition in the replay buffer.
                if done and isinstance(self.env, VecEnv):
                    # if it is the episode terminal iteration, store the terminal observation
                    self.replay_buffer.add(obs_, action, reward_,
                                           info['terminal_observation'],
                                           float(done))
                else:
                    self.replay_buffer.add(obs_, action, reward_, new_obs_,
                                           float(done))

                obs = new_obs
                # Save the unnormalized observation
                if self._vec_normalize_env is not None:
                    obs_ = new_obs_

                # Retrieve reward and episode length if using Monitor wrapper
                maybe_ep_info = info.get('episode')
                if maybe_ep_info is not None:
                    self.ep_info_buf.extend([maybe_ep_info])

                if writer is not None:
                    # Write reward per episode to tensorboard
                    ep_reward = np.array([reward_]).reshape((1, -1))
                    ep_done = np.array([done]).reshape((1, -1))
                    tf_util.total_episode_reward_logger(
                        self.episode_reward, ep_reward, ep_done, writer,
                        self.num_timesteps)

                if step % self.train_freq == 0:
                    callback.on_rollout_end()

                    mb_infos_vals = []
                    # Update policy, critics and target networks
                    for grad_step in range(self.gradient_steps):
                        # Break if the warmup phase is not over
                        # or if there are not enough samples in the replay buffer
                        if not self.replay_buffer.can_sample(self.batch_size) \
                           or self.num_timesteps < self.learning_starts:
                            break
                        n_updates += 1
                        # Compute current learning_rate
                        frac = 1.0 - step / total_timesteps
                        current_lr = self.learning_rate(frac)
                        # Update policy and critics (q functions)
                        mb_infos_vals.append(
                            self._train_step(step, writer, current_lr))
                        # Update target network
                        if (step +
                                grad_step) % self.target_update_interval == 0:
                            # Update target network
                            self.sess.run(self.target_update_op)
                    # Log losses and entropy, useful for monitor training
                    if len(mb_infos_vals) > 0:
                        infos_values = np.mean(mb_infos_vals, axis=0)

                    callback.on_rollout_start()

                episode_rewards[-1] += reward_
                if done:
                    if self.action_noise is not None:
                        self.action_noise.reset()
                    if not isinstance(self.env, VecEnv):
                        obs = self.env.reset()
                    episode_rewards.append(0.0)

                    maybe_is_success = info.get('is_success')
                    if maybe_is_success is not None:
                        episode_successes.append(float(maybe_is_success))

                if len(episode_rewards[-101:-1]) == 0:
                    mean_reward = -np.inf
                else:
                    mean_reward = round(
                        float(np.mean(episode_rewards[-101:-1])), 1)

                num_episodes = len(episode_rewards)
                # Display training infos
                if self.verbose >= 1 and done and log_interval is not None and len(
                        episode_rewards) % log_interval == 0:
                    fps = int(step / (time.time() - start_time))
                    logger.logkv("episodes", num_episodes)
                    logger.logkv("mean 100 episode reward", mean_reward)
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_rewmean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'eplenmean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.logkv("n_updates", n_updates)
                    logger.logkv("current_lr", current_lr)
                    logger.logkv("fps", fps)
                    logger.logkv('time_elapsed', int(time.time() - start_time))
                    if len(episode_successes) > 0:
                        logger.logkv("success rate",
                                     np.mean(episode_successes[-100:]))
                    if len(infos_values) > 0:
                        for (name, val) in zip(self.infos_names, infos_values):
                            logger.logkv(name, val)
                    logger.logkv("total timesteps", self.num_timesteps)
                    logger.dumpkvs()
                    # Reset infos:
                    infos_values = []
            callback.on_training_end()
            return self
Exemple #3
0
    def learn(self, total_timesteps, callback=None,
              log_interval=4, tb_log_name="TD3", reset_num_timesteps=True, replay_wrapper=None):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)
        last_replay_update = 0

        if replay_wrapper is not None:
            self.replay_buffer = replay_wrapper(self.replay_buffer)

        if isinstance(self.train_freq, tuple):  # TODO: bug with optuna please FIX
            self.train_freq = self.train_freq[0]
            self.gradient_steps = self.gradient_steps[0]

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:

            self._setup_learn()

            # Transform to callable if needed
            self.learning_rate = get_schedule_fn(self.learning_rate)
            # Initial learning rate
            current_lr = self.learning_rate(1)

            start_time = time.time()
            episode_rewards = [0.0]
            episode_successes = []
            if self.action_noise is not None:
                self.action_noise.reset()
            obs = self.env.reset()
            # Retrieve unnormalized observation for saving into the buffer
            if self._vec_normalize_env is not None:
                obs_ = self._vec_normalize_env.get_original_obs().squeeze()
            n_updates = 0
            infos_values = []
            self.active_sampling = False
            initial_step = self.num_timesteps
            episode_data = []

            callback.on_training_start(locals(), globals())
            callback.on_rollout_start()

            if self.buffer_is_prioritized and \
                    ((replay_wrapper is not None and self.replay_buffer.replay_buffer.__name__ == "ReplayBuffer")
                     or (replay_wrapper is None and self.replay_buffer.__name__ == "ReplayBuffer")) \
                    and self.num_timesteps >= self.prioritization_starts:
                self._set_prioritized_buffer()

            if self.recurrent_policy:
                done = False
                policy_state = self.policy_tf_act.initial_state
                prev_policy_state = self.policy_tf_act.initial_state  # Keep track of this so it doesnt have to be recalculated when saving it to replay buffer

            for step in range(initial_step, total_timesteps):
                # Before training starts, randomly sample actions
                # from a uniform distribution for better exploration.
                # Afterwards, use the learned policy
                # if random_exploration is set to 0 (normal setting)
                if self.num_timesteps < self.learning_starts or np.random.rand() < self.random_exploration:
                    # actions sampled from action space are from range specific to the environment
                    # but algorithm operates on tanh-squashed actions therefore simple scaling is used
                    unscaled_action = self.env.action_space.sample()
                    action = scale_action(self.action_space, unscaled_action)
                else:
                    if self.recurrent_policy:
                        action, policy_state = self.policy_tf_act.step(obs[None], state=policy_state, mask=np.array(done)[None])
                        action = action.flatten()
                    else:
                        action = self.policy_tf.step(obs[None]).flatten()
                    # Add noise to the action, as the policy
                    # is deterministic, this is required for exploration
                    if self.action_noise is not None:
                        action = np.clip(action + self.action_noise(), -1, 1)
                    # Rescale from [-1, 1] to the correct bounds
                    unscaled_action = unscale_action(self.action_space, action)

                assert action.shape == self.env.action_space.shape

                new_obs, reward, done, info = self.env.step(unscaled_action)

                self.num_timesteps += 1

                # Only stop training if return value is False, not when it is None. This is for backwards
                # compatibility with callbacks that have no return statement.
                if callback.on_step() is False:
                    break

                # Store only the unnormalized version
                if self._vec_normalize_env is not None:
                    new_obs_ = self._vec_normalize_env.get_original_obs().squeeze()
                    reward_ = self._vec_normalize_env.get_original_reward().squeeze()
                else:
                    # Avoid changing the original ones
                    obs_, new_obs_, reward_ = obs, new_obs, reward

                if self.reward_transformation is not None:
                    reward = self.reward_transformation(reward)

                # Store transition in the replay buffer.
                extra_data = {}
                if self.time_aware:
                    bootstrap = True
                    if done:
                        info_time_limit = info.get("TimeLimit.truncated", None)
                        bootstrap = info.get("termination", None) == "steps" or \
                                    (info_time_limit is not None and info_time_limit)
                    extra_data["bootstrap"] = bootstrap

                if hasattr(self.policy, "collect_data"):
                    if self.recurrent_policy:
                        extra_data.update(self.policy_tf_act.collect_data(locals(), globals()))
                        if self.policy_tf.save_target_state:
                            extra_data.update({"target_" + state_name: self.target_policy_tf.initial_state[0, :]
                                               for state_name in (["state"] if self.target_policy_tf.share_lstm
                                                                  else ["pi_state", "qf1_state", "qf2_state"])})
                    else:
                        extra_data.update(self.policy_tf.collect_data(locals(), globals()))
                self.replay_buffer.add(obs, action, reward, new_obs, done, **extra_data) # Extra data must be sent as kwargs to support separate bootstrap and done signals (needed for HER style algorithms)
                episode_data.append({"obs": obs, "action": action, "reward": reward, "obs_tp1": new_obs, "done": done, **extra_data})
                obs = new_obs

                # Save the unnormalized observation
                if self._vec_normalize_env is not None:
                    obs_ = new_obs_

                if ((replay_wrapper is not None and self.replay_buffer.replay_buffer.__name__ == "RankPrioritizedReplayBuffer")\
                        or self.replay_buffer.__name__ == "RankPrioritizedReplayBuffer") and \
                        self.num_timesteps % self.buffer_size == 0:
                    self.replay_buffer.rebalance()

                # Retrieve reward and episode length if using Monitor wrapper
                maybe_ep_info = info.get('episode')
                if maybe_ep_info is not None and self.num_timesteps >= self.learning_starts:
                    self.ep_info_buf.extend([maybe_ep_info])

                if writer is not None:
                    # Write reward per episode to tensorboard
                    ep_reward = np.array([reward_]).reshape((1, -1))
                    ep_done = np.array([done]).reshape((1, -1))
                    tf_util.total_episode_reward_logger(self.episode_reward, ep_reward,
                                                        ep_done, writer, self.num_timesteps)

                if self.num_timesteps % self.train_freq == 0:
                    callback.on_rollout_end()

                    mb_infos_vals = []
                    # Update policy, critics and target networks
                    for grad_step in range(self.gradient_steps):
                        # Break if the warmup phase is not over
                        # or if there are not enough samples in the replay buffer
                        if not self.replay_buffer.can_sample(self.batch_size) \
                                or self.num_timesteps < self.learning_starts:
                            break
                        n_updates += 1
                        # Compute current learning_rate
                        frac = 1.0 - self.num_timesteps / total_timesteps
                        current_lr = self.learning_rate(frac)
                        # Update policy and critics (q functions)
                        # Note: the policy is updated less frequently than the Q functions
                        # this is controlled by the `policy_delay` parameter
                        step_writer = writer if grad_step % self.write_freq == 0 else None
                        mb_infos_vals.append(
                            self._train_step(step, step_writer, current_lr, (step + grad_step) % self.policy_delay == 0))

                    # Log losses and entropy, useful for monitor training
                    if len(mb_infos_vals) > 0:
                        infos_values = np.mean(mb_infos_vals, axis=0)
                    callback.on_rollout_start()

                episode_rewards[-1] += reward
                if self.recurrent_policy:
                    prev_policy_state = policy_state
                if done:
                    if isinstance(self.replay_buffer, DiscrepancyReplayBuffer) and n_updates - last_replay_update >= 5000:
                        self.replay_buffer.update_priorities()
                        last_replay_update = n_updates
                    if self.action_noise is not None:
                        self.action_noise.reset()
                    if not isinstance(self.env, VecEnv):
                        if self.active_sampling:
                            sample_obs, sample_state = self.env.get_random_initial_states(25)
                            obs_discrepancies = self.policy_tf.get_q_discrepancy(sample_obs)
                            obs = self.env.reset(**sample_state[np.argmax(obs_discrepancies)])
                        else:
                            obs = self.env.reset()
                    episode_data = []
                    episode_rewards.append(0.0)
                    if self.recurrent_policy:
                        prev_policy_state = self.policy_tf_act.initial_state

                    maybe_is_success = info.get('is_success')
                    if maybe_is_success is not None:
                        episode_successes.append(float(maybe_is_success))

                if len(episode_rewards[-101:-1]) == 0:
                    mean_reward = -np.inf
                else:
                    mean_reward = round(float(np.mean(episode_rewards[-101:-1])), 1)

                num_episodes = len(episode_rewards)

                self.num_timesteps += 1

                if self.buffer_is_prioritized and \
                        ((replay_wrapper is not None and self.replay_buffer.replay_buffer.__name__ == "ReplayBuffer")
                         or (replay_wrapper is None and self.replay_buffer.__name__ == "ReplayBuffer"))\
                        and self.num_timesteps >= self.prioritization_starts:
                    self._set_prioritized_buffer()

                # Display training infos
                if self.verbose >= 1 and done and log_interval is not None and len(episode_rewards) % log_interval == 0:
                    fps = int(step / (time.time() - start_time))
                    logger.logkv("episodes", num_episodes)
                    logger.logkv("mean 100 episode reward", mean_reward)
                    if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0:
                        logger.logkv('ep_rewmean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf]))
                        logger.logkv('eplenmean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf]))
                    logger.logkv("n_updates", n_updates)
                    logger.logkv("current_lr", current_lr)
                    logger.logkv("fps", fps)
                    logger.logkv('time_elapsed', int(time.time() - start_time))
                    if len(episode_successes) > 0:
                        logger.logkv("success rate", np.mean(episode_successes[-100:]))
                    if len(infos_values) > 0:
                        for (name, val) in zip(self.infos_names, infos_values):
                            logger.logkv(name, val)
                    logger.logkv("total timesteps", self.num_timesteps)
                    logger.dumpkvs()
                    # Reset infos:
                    infos_values = []

            callback.on_training_end()
            return self
Exemple #4
0
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=100,
              tb_log_name="A2C",
              reset_num_timesteps=True):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()
            self.learning_rate_schedule = Scheduler(
                initial_value=self.learning_rate,
                n_values=total_timesteps,
                schedule=self.lr_schedule)

            t_start = time.time()
            callback.on_training_start(locals(), globals())

            for update in range(1, total_timesteps // self.n_batch + 1):

                callback.on_rollout_start()
                # true_reward is the reward without discount
                rollout = self.runner.run(callback)
                # unpack
                obs, states, rewards, masks, actions, values, ep_infos, true_reward = rollout

                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                _, value_loss, policy_entropy = self._train_step(
                    obs, states, rewards, masks, actions, values,
                    self.num_timesteps // self.n_batch, writer)
                n_seconds = time.time() - t_start
                fps = int((update * self.n_batch) / n_seconds)

                if writer is not None:
                    total_episode_reward_logger(
                        self.episode_reward,
                        true_reward.reshape((self.n_envs, self.n_steps)),
                        masks.reshape((self.n_envs, self.n_steps)), writer,
                        self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0
                                          or update == 1):
                    explained_var = explained_variance(values, rewards)
                    logger.record_tabular("nupdates", update)
                    logger.record_tabular("total_timesteps",
                                          self.num_timesteps)
                    logger.record_tabular("fps", fps)
                    logger.record_tabular("policy_entropy",
                                          float(policy_entropy))
                    logger.record_tabular("value_loss", float(value_loss))
                    logger.record_tabular("explained_variance",
                                          float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_reward_mean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'ep_len_mean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.dump_tabular()

        callback.on_training_end()
        return self
 def reward_callback(local, _):
     nonlocal eprewmeans
     eprewmeans.append(safe_mean([ep_info['r'] for ep_info in local['ep_info_buf']]))
Exemple #6
0
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=100,
              tb_log_name="ACKTR",
              reset_num_timesteps=True):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()
            self.n_batch = self.n_envs * self.n_steps

            self.learning_rate_schedule = Scheduler(
                initial_value=self.learning_rate,
                n_values=total_timesteps,
                schedule=self.lr_schedule)

            # FIFO queue of the q_runner thread is closed at the end of the learn function.
            # As a result, it needs to be redefinied at every call
            with self.graph.as_default():
                with tf.variable_scope(
                        "kfac_apply",
                        reuse=self.trained,
                        custom_getter=tf_util.outer_scope_getter(
                            "kfac_apply")):
                    # Some of the variables are not in a scope when they are create
                    # so we make a note of any previously uninitialized variables
                    tf_vars = tf.global_variables()
                    is_uninitialized = self.sess.run(
                        [tf.is_variable_initialized(var) for var in tf_vars])
                    old_uninitialized_vars = [
                        v for (v, f) in zip(tf_vars, is_uninitialized) if not f
                    ]

                    self.train_op, self.q_runner = self.optim.apply_gradients(
                        list(zip(self.grads_check, self.params)))

                    # then we check for new uninitialized variables and initialize them
                    tf_vars = tf.global_variables()
                    is_uninitialized = self.sess.run(
                        [tf.is_variable_initialized(var) for var in tf_vars])
                    new_uninitialized_vars = [
                        v for (v, f) in zip(tf_vars, is_uninitialized)
                        if not f and v not in old_uninitialized_vars
                    ]

                    if len(new_uninitialized_vars) != 0:
                        self.sess.run(
                            tf.variables_initializer(new_uninitialized_vars))

            self.trained = True

            t_start = time.time()
            coord = tf.train.Coordinator()
            if self.q_runner is not None:
                enqueue_threads = self.q_runner.create_threads(self.sess,
                                                               coord=coord,
                                                               start=True)
            else:
                enqueue_threads = []

            callback.on_training_start(locals(), globals())

            for update in range(1, total_timesteps // self.n_batch + 1):

                callback.on_rollout_start()

                # pytype:disable=bad-unpacking
                # true_reward is the reward without discount
                if isinstance(self.runner, PPO2Runner):
                    # We are using GAE
                    rollout = self.runner.run(callback)
                    obs, returns, masks, actions, values, _, states, ep_infos, true_reward = rollout
                else:
                    rollout = self.runner.run(callback)
                    obs, states, returns, masks, actions, values, ep_infos, true_reward = rollout
                # pytype:enable=bad-unpacking

                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                policy_loss, value_loss, policy_entropy = self._train_step(
                    obs, states, returns, masks, actions, values,
                    self.num_timesteps // (self.n_batch + 1), writer)
                n_seconds = time.time() - t_start
                fps = int((update * self.n_batch) / n_seconds)

                if writer is not None:
                    total_episode_reward_logger(
                        self.episode_reward,
                        true_reward.reshape((self.n_envs, self.n_steps)),
                        masks.reshape((self.n_envs, self.n_steps)), writer,
                        self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0
                                          or update == 1):
                    explained_var = explained_variance(values, returns)
                    logger.record_tabular("nupdates", update)
                    logger.record_tabular("total_timesteps",
                                          self.num_timesteps)
                    logger.record_tabular("fps", fps)
                    logger.record_tabular("policy_entropy",
                                          float(policy_entropy))
                    logger.record_tabular("policy_loss", float(policy_loss))
                    logger.record_tabular("value_loss", float(value_loss))
                    logger.record_tabular("explained_variance",
                                          float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_reward_mean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'ep_len_mean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.dump_tabular()

            coord.request_stop()
            coord.join(enqueue_threads)

        callback.on_training_end()
        return self
    def learn(self, total_timesteps, callback=None,
              log_interval=1, tb_log_name="SAC", print_freq=100,vae=None):

        self.learning_rate = get_schedule_fn(self.learning_rate)

        callback = self._init_callback(callback)

        with TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name) as writer:

            self._setup_learn()

            # Transform to callable if needed
            self.learning_rate = get_schedule_fn(self.learning_rate)

            start_time = time.time()
            episode_rewards = [0.0]

            obs = self.env.reset()

            self.episode_reward = np.zeros((1,))
            ep_info_buf = deque(maxlen=100)
            ep_len = 0
            self.n_updates = 0
            infos_values = []
            mb_infos_vals = []
            callback.on_training_start(locals(), globals())
            callback.on_rollout_start()

            for step in range(total_timesteps):
                # Compute current learning_rate
                frac = 1.0 - step / total_timesteps
                current_lr = self.learning_rate(frac)

                if callback is not None:
                    # Only stop training if return value is False, not when it is None. This is for backwards
                    # compatibility with callbacks that have no return statement.
                    if callback.on_step() is False:
                        break

                # Before training starts, randomly sample actions
                # from a uniform distribution for better exploration.
                # Afterwards, use the learned policy.
                if step < self.learning_starts:
                    action = self.env.action_space.sample()
                    # No need to rescale when sampling random action
                    rescaled_action = action
                else:
                    action = self.policy_tf.step(obs[None], deterministic=False).flatten()
                    # Rescale from [-1, 1] to the correct bounds
                    rescaled_action = action * np.abs(self.action_space.low)

                assert action.shape == self.env.action_space.shape

                new_obs, reward, done, info = self.env.step(rescaled_action)
                ep_len += 1
                callback.update_locals(locals())
                if callback.on_step() is False:
                    break

                ##################
                arr = vae.decode(new_obs[:, :512].reshape(1, 512))
                arr = np.round(arr).astype(np.uint8)
                arr = arr.reshape(80, 160, 3)
                #to visualize what car sees
                #cv2.imwrite("decoded_img.png", arr)

                ###############3
                if print_freq > 0 and ep_len % print_freq == 0 and ep_len > 0:
                    print("{} steps".format(ep_len))

                # Store transition in the replay buffer.
                self.replay_buffer.add(obs, action, reward, new_obs, float(done))
                obs = new_obs

                # Retrieve reward and episode length if using Monitor wrapper
                maybe_ep_info = info.get('episode')
                if maybe_ep_info is not None:
                    ep_info_buf.extend([maybe_ep_info])

                if writer is not None:
                    # Write reward per episode to tensorboard
                    ep_reward = np.array([reward]).reshape((1, -1))
                    ep_done = np.array([done]).reshape((1, -1))
                    self.episode_reward = total_episode_reward_logger(self.episode_reward, ep_reward,
                                                                      ep_done, writer, step)

                if ep_len > self.train_freq:
                    print("Additional training")
                    self.env.reset()
                    mb_infos_vals = self.optimize(step, writer, current_lr)
                    done = True


                episode_rewards[-1] += reward
                if done:
                    obs = self.env.reset()
                    print("Episode finished. Reward: {:.2f} {} Steps".format(episode_rewards[-1], ep_len))
                    episode_rewards.append(0.0)
                    ep_len = 0
                    mb_infos_vals = self.optimize(step, writer, current_lr)



                    # train VAE
                    train_start = time.time()
                    #training VAE with SAC
                    #vae.optimize()
                    print("VAE training duration:", time.time() - train_start)
                    obs = self.env.reset()

                callback.on_rollout_end()

                # Log losses and entropy, useful for monitor training
                if len(mb_infos_vals) > 0:
                    infos_values = np.mean(mb_infos_vals, axis=0)

                if len(episode_rewards[-101:-1]) == 0:
                    mean_reward = -np.inf
                else:
                    mean_reward = round(float(np.mean(episode_rewards[-101:-1])), 1)

                num_episodes = len(episode_rewards)
                callback.on_rollout_start()

                if self.verbose >= 1 and done and log_interval is not None and len(episode_rewards) % log_interval == 0:
                    fps = int(step / (time.time() - start_time))
                    logger.logkv("episodes", num_episodes)
                    logger.logkv("mean 100 episode reward", mean_reward)
                    logger.logkv('ep_rewmean', safe_mean([ep_info['r'] for ep_info in ep_info_buf]))
                    logger.logkv('eplenmean', safe_mean([ep_info['l'] for ep_info in ep_info_buf]))
                    logger.logkv("n_updates", self.n_updates)
                    logger.logkv("current_lr", current_lr)
                    logger.logkv("fps", fps)
                    logger.logkv('time_elapsed', "{:.2f}".format(time.time() - start_time))
                    if len(infos_values) > 0:
                        for (name, val) in zip(self.infos_names, infos_values):
                            logger.logkv(name, val)
                    logger.logkv("total timesteps", step)
                    logger.dumpkvs()
                    # Reset infos:
                    infos_values = []




            # Use last batch
            print("Final optimization before saving")
            self.env.reset()
            mb_infos_vals = self.optimize(step, writer, current_lr)
        callback.on_training_end()

        return self
Exemple #8
0
    def learn(self, total_timesteps, log_dir, logger, 
        callback=None, log_interval=1, tb_log_name="PPO2",
        reset_num_timesteps=True):
        # Transform to callable if needed
        self.learning_rate = get_schedule_fn(self.learning_rate)
        self.cliprange = get_schedule_fn(self.cliprange)
        cliprange_vf = get_schedule_fn(self.cliprange_vf)

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:
            self._setup_learn()

            t_first_start = time.time()

            runner = Runner(env=self.env, model=self, n_steps=self.n_steps, gamma=self.gamma, lam=self.lam)
            self.episode_reward = np.zeros((self.n_envs,))

            ep_info_buf = deque(maxlen=100)

            n_updates = total_timesteps // self.n_batch
            
            for update in range(1, n_updates + 1):
                # Do the following except keyboard interrupt the learning process.
                try:
                    assert self.n_batch % self.nminibatches == 0
                    batch_size = self.n_batch // self.nminibatches
                    frac = 1.0 - (update - 1.0) / n_updates
                    lr_now = self.learning_rate(frac)
                    cliprange_now = self.cliprange(frac)
                    cliprange_vf_now = cliprange_vf(frac)

                    t_start = time.time()
                    # Unpack
                    obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = runner.run()
                    # # add by Yunlong
                    t_now = time.time()
                    fps = int(self.n_batch / (t_now - t_start))

                    self.ep_info_buf.extend(ep_infos)
                    mb_loss_vals = []
                    if states is None:  # nonrecurrent version
                        update_fac = self.n_batch // self.nminibatches // self.noptepochs + 1
                        inds = np.arange(self.n_batch)
                        for epoch_num in range(self.noptepochs):
                            np.random.shuffle(inds)
                            for start in range(0, self.n_batch, batch_size):
                                timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_batch + epoch_num *
                                                                                self.n_batch + start) // batch_size)
                                end = start + batch_size
                                mbinds = inds[start:end]
                                slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs))
                                mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, writer=writer,
                                                                    update=timestep, cliprange_vf=cliprange_vf_now))
                    else:  # recurrent version
                        update_fac = self.n_batch // self.nminibatches // self.noptepochs // self.n_steps + 1
                        assert self.n_envs % self.nminibatches == 0
                        env_indices = np.arange(self.n_envs)
                        flat_indices = np.arange(self.n_envs * self.n_steps).reshape(self.n_envs, self.n_steps)
                        envs_per_batch = batch_size // self.n_steps
                        for epoch_num in range(self.noptepochs):
                            np.random.shuffle(env_indices)
                            for start in range(0, self.n_envs, envs_per_batch):
                                timestep = self.num_timesteps // update_fac + ((self.noptepochs * self.n_envs + epoch_num *
                                                                                self.n_envs + start) // envs_per_batch)
                                end = start + envs_per_batch
                                mb_env_inds = env_indices[start:end]
                                mb_flat_inds = flat_indices[mb_env_inds].ravel()
                                slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs))
                                mb_states = states[mb_env_inds]
                                mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, update=timestep,
                                                                    writer=writer, states=mb_states,
                                                                    cliprange_vf=cliprange_vf_now))

                    loss_vals = np.mean(mb_loss_vals, axis=0)
                    # # comment out by Yunlong
                    # t_now = time.time()
                    # fps = int(self.n_batch / (t_now - t_start))

                    if writer is not None:
                        total_episode_reward_logger(self.episode_reward,
                            true_reward.reshape((self.n_envs, self.n_steps)),
                            masks.reshape((self.n_envs, self.n_steps)),
                            writer, self.num_timesteps)

                    if self.verbose >= 1 and (update % log_interval == 0 or update == 1):
                        explained_var = explained_variance(values, returns)
                        logger.logkv("serial_timesteps", update * self.n_steps)
                        logger.logkv("n_updates", update)
                        logger.logkv("total_timesteps", self.num_timesteps)
                        logger.logkv("fps", fps)
                        logger.logkv("explained_variance", float(explained_var))
                        if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0:
                            logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf]))
                            logger.logkv('ep_len_mean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf]))
                        logger.logkv('time_elapsed', t_start - t_first_start)
                        logger.logkv('true_reward', np.mean(true_reward))
                        for (loss_val, loss_name) in zip(loss_vals, self.loss_names):
                            logger.logkv(loss_name, loss_val)
                        logger.dumpkvs()
                    
                    if callback is not None:
                        # Only stop training if return value is False, not when it is None. This is for backwards
                        # compatibility with callbacks that have no return statement.
                        if callback(locals(), globals()) is False:
                            break
                except KeyboardInterrupt:
                    print("You have stopped the learning process by keyboard interrupt. Model Parameter is saved. \n")
                    # You can actually save files using the instance of self. save the model parameters. 
                    self.save(log_dir + "_Iteration_{}".format(update))
                    sys.exit()
            return self
Exemple #9
0
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=4,
              tb_log_name="SAC",
              reset_num_timesteps=True,
              replay_wrapper=None,
              planning_steps=0):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        # TODO: use builtin log writer instead of this old lib
        tb_configure(self.tensorboard_log)

        action_log_csv = self.tensorboard_log + "_actions.csv"

        action_log_df = pd.DataFrame(columns=np.concatenate((
            ["iteration"],
            ["p" + str(i) for i in range(24)],
            ["b" + str(i) for i in range(24)],
            ["e" + str(i) for i in range(24)],
        )))

        action_log_index = 0

        steps_in_real_env = 0
        person_data_dict = {}

        if replay_wrapper is not None:
            self.replay_buffer = replay_wrapper(self.replay_buffer)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:

            self._setup_learn()

            # Transform to callable if needed
            self.learning_rate = get_schedule_fn(self.learning_rate)
            # Initial learning rate
            current_lr = self.learning_rate(1)

            start_time = time.time()
            episode_rewards = [0.0]
            episode_successes = []
            if self.action_noise is not None:
                self.action_noise.reset()
            obs = self.env.reset()
            # Retrieve unnormalized observation for saving into the buffer
            if self._vec_normalize_env is not None:
                obs_ = self._vec_normalize_env.get_original_obs().squeeze()

            n_updates = 0
            infos_values = []

            callback.on_training_start(locals(), globals())
            callback.on_rollout_start()

            for step in range(total_timesteps):
                # Before training starts, randomly sample actions
                # from a uniform distribution for better exploration.
                # Afterwards, use the learned policy
                # if random_exploration is set to 0 (normal setting)
                if self.num_timesteps < self.learning_starts or np.random.rand(
                ) < self.random_exploration:
                    # actions sampled from action space are from range specific to the environment
                    # but algorithm operates on tanh-squashed actions therefore simple scaling is used
                    unscaled_action = self.env.action_space.sample()
                    action = scale_action(self.action_space, unscaled_action)
                else:
                    action = self.policy_tf.step(
                        obs[None], deterministic=False).flatten()
                    # Add noise to the action (improve exploration,
                    # not needed in general)
                    if self.action_noise is not None:
                        action = np.clip(action + self.action_noise(), -1, 1)
                    # inferred actions need to be transformed to environment action_space before stepping
                    unscaled_action = unscale_action(self.action_space, action)

                assert action.shape == self.env.action_space.shape

                # if not planning:
                #     new_obs, reward, done, info = self.env.step(unscaled_action)
                # else:

                if not self.num_timesteps % (planning_steps + 1):

                    ## TODO: work on this?

                    # if self.num_timesteps ==1:
                    #      # form the control
                    #     from sklearn.preprocessing import MinMaxScaler
                    #     grid_price = self.non_vec_env.prices[self.non_vec_env.day - 1]
                    #     scaler = MinMaxScaler(feature_range = (0, 10))
                    #     scaled_grid_price = scaler.fit_transform(np.array(grid_price).reshape(-1, 1))
                    #     scaled_grid_price = np.squeeze(scaled_grid_price)
                    #     energy_consumptions = self.non_vec_env._simulate_humans(scaled_grid_price)
                    #     person_data_dict["control"] = {
                    #         "x" : list(range(8, 18)),
                    #         "grid_price" : scaled_grid_price,
                    #         "energy_consumption" : energy_consumptions["avg"],
                    #         "reward" : self.non_vec_env._get_reward(price = grid_price, energy_consumptions = energy_consumptions),
                    #     }

                    # # form the data_dict
                    # if self.num_timesteps in [100, 1000, 9500]:
                    #     person_data_dict["Step " + str(self.num_timesteps)] = {
                    #         "x" : list(range(8, 18)),
                    #         "grid_price" : self.non_vec_env.prices[self.non_vec_env.day - 1],
                    #         "action" : unscaled_action,
                    #         "energy_consumption" : self.non_vec_env.prev_energy,
                    #         "reward" : reward,
                    #     }

                    # if self.num_timesteps == 9501 and self.people_reaction_log_dir and self.plotter_person_reaction:
                    #     # call the plotting statement
                    #     self.plotter_person_reaction(person_data_dict, self.people_reaction_log_dir)

                    new_obs, reward, done, info = self.env.step(
                        unscaled_action)  #, step_num = self.num_timesteps)
                    steps_in_real_env += 1

                else:
                    print("planning step")
                    new_obs, reward, done, info = self.non_vec_env.planning_step(
                        unscaled_action)

                # write the action to a csv

                # if ((not self.num_timesteps % 10) & (self.num_timesteps > 10000)) or self.num_timesteps>19500:

                #     ### get the battery charging
                #     battery_op = {}
                #     total_battery_consumption = np.zeros(24)
                #     total_energy_consumption = np.zeros(24)

                #     for prosumer_name in self.non_vec_env.prosumer_dict:
                #         #Get players response to agent's actions
                #         day = self.non_vec_env.day
                #         price = self.non_vec_env.price
                #         prosumer = self.non_vec_env.prosumer_dict[prosumer_name]
                #         prosumer_battery = prosumer.get_battery_operation(day, price)
                #         prosumer_demand = prosumer.get_response(day, price)

                #         total_battery_consumption += prosumer_battery
                #         total_energy_consumption += prosumer_demand

                #     action_log_df.loc[action_log_index] = np.concatenate(
                #         ([self.num_timesteps],
                #             price,
                #             total_battery_consumption,
                #             total_energy_consumption,))
                #     action_log_index += 1
                #     action_log_df.to_csv(action_log_csv)
                #     print("Iteration: " + str(self.num_timesteps))

                # Only stop training if return value is False, not when it is None. This is for backwards
                # compatibility with callbacks that have no return statement.
                callback.update_locals(locals())
                if callback.on_step() is False:
                    break

                # Store only the unnormalized version
                if self._vec_normalize_env is not None:
                    new_obs_ = self._vec_normalize_env.get_original_obs(
                    ).squeeze()
                    reward_ = self._vec_normalize_env.get_original_reward(
                    ).squeeze()
                else:
                    # Avoid changing the original ones
                    obs_, new_obs_, reward_ = obs, new_obs, reward

                if not self.num_timesteps % (planning_steps + 1):
                    tb_log_value("reward_in_environment", reward_,
                                 steps_in_real_env)

                # tb_log_value("reward_planning", reward_, self.num_timesteps)
                self.num_timesteps += 1

                # Store transition in the replay buffer.
                self.replay_buffer_add(obs_, action, reward_, new_obs_, done,
                                       info)
                obs = new_obs
                # Save the unnormalized observation
                if self._vec_normalize_env is not None:
                    obs_ = new_obs_

                # Retrieve reward and episode length if using Monitor wrapper
                maybe_ep_info = info.get('episode')
                if maybe_ep_info is not None:
                    self.ep_info_buf.extend([maybe_ep_info])

                if writer is not None:
                    # Write reward per episode to tensorboard
                    ep_reward = np.array([reward_]).reshape((1, -1))
                    ep_done = np.array([done]).reshape((1, -1))
                    tf_util.total_episode_reward_logger(
                        self.episode_reward, ep_reward, ep_done, writer,
                        self.num_timesteps)

                    if self.num_timesteps % 100 == 0 and not np.any(
                            unscaled_action == np.inf):
                        if self.action_to_prices_fn:
                            prices = self.action_to_prices_fn(unscaled_action)
                            # tf_util.log_histogram(writer, "action_vec_hist", unscaled_action, self.num_timesteps, bins=10, flush=False)
                            # tb_log_value("constant_load_price", np.sum(prices), self.num_timesteps)
                            # tf_util.log_vec_as_histogram(writer, "prices", prices, self.num_timesteps, flush=True)

                if self.num_timesteps % self.train_freq == 0:
                    callback.on_rollout_end()

                    mb_infos_vals = []
                    # Update policy, critics and target networks
                    for grad_step in range(self.gradient_steps):
                        # Break if the warmup phase is not over
                        # or if there are not enough samples in the replay buffer
                        if not self.replay_buffer.can_sample(self.batch_size) \
                           or self.num_timesteps < self.learning_starts:
                            break
                        n_updates += 1
                        # Compute current learning_rate
                        frac = 1.0 - step / total_timesteps
                        current_lr = self.learning_rate(frac)
                        # Update policy and critics (q functions)
                        mb_infos_vals.append(
                            self._train_step(step, writer, current_lr))
                        # Update target network
                        if (step +
                                grad_step) % self.target_update_interval == 0:
                            # Update target network
                            self.sess.run(self.target_update_op)
                    # Log losses and entropy, useful for monitor training
                    if len(mb_infos_vals) > 0:
                        infos_values = np.mean(mb_infos_vals, axis=0)

                    callback.on_rollout_start()

                episode_rewards[-1] += reward_
                if done:
                    if self.action_noise is not None:
                        self.action_noise.reset()
                    if not isinstance(self.env, VecEnv):
                        obs = self.env.reset()
                    episode_rewards.append(0.0)

                    maybe_is_success = info.get('is_success')
                    if maybe_is_success is not None:
                        episode_successes.append(float(maybe_is_success))

                if len(episode_rewards[-101:-1]) == 0:
                    mean_reward = -np.inf
                else:
                    mean_reward = round(
                        float(np.mean(episode_rewards[-101:-1])), 1)

                # substract 1 as we appended a new term just now
                num_episodes = len(episode_rewards) - 1
                # Display training infos
                if self.verbose >= 1 and done and log_interval is not None and num_episodes % log_interval == 0:
                    fps = int(step / (time.time() - start_time))
                    logger.logkv("episodes", num_episodes)
                    logger.logkv("mean 100 episode reward", mean_reward)
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_rewmean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        logger.logkv(
                            'eplenmean',
                            safe_mean([
                                ep_info['l'] for ep_info in self.ep_info_buf
                            ]))
                    logger.logkv("n_updates", n_updates)
                    logger.logkv("current_lr", current_lr)
                    logger.logkv("fps", fps)
                    logger.logkv('time_elapsed', int(time.time() - start_time))
                    if len(episode_successes) > 0:
                        logger.logkv("success rate",
                                     np.mean(episode_successes[-100:]))
                    if len(infos_values) > 0:
                        for (name, val) in zip(self.infos_names, infos_values):
                            logger.logkv(name, val)
                    logger.logkv("total timesteps", self.num_timesteps)
                    logger.dumpkvs()
                    # Reset infos:
                    infos_values = []
            callback.on_training_end()
            return self  #, ep_reward #, reward_
Exemple #10
0
    def learn(self, total_timesteps, callback=None, log_interval=1, tb_log_name="Dual",
              reset_num_timesteps=True):
        # Transform to callable if needed
        self.learning_rate  = get_schedule_fn(self.learning_rate)
        self.cliprange      = get_schedule_fn(self.cliprange)
        cliprange_vf        = get_schedule_fn(self.cliprange_vf)

        new_tb_log   = self._init_num_timesteps(reset_num_timesteps)
        top_callback = SaveOnTopRewardCallback(check_freq=self.n_steps, logdir=self.tensorboard_log, models_num=self.models_num)
        callback.append(top_callback)
        callback     = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.models[0].graph, self.tensorboard_log, tb_log_name, new_tb_log) as writer:

            for model in self.models:
                model._setup_learn(self)

            t_first_start = time.time()
            n_updates     = total_timesteps // (self.n_envs * self.n_steps)

            callback.on_training_start(locals(), globals())

            for update in range(1, n_updates + 1):
                assert (self.n_envs * self.n_steps) % self.nminibatches == 0, ("The number of minibatches (`nminibatches`) is not a factor of the total number of samples collected per rollout (`n_batch`), some samples won't be used.")

                batch_size       = (self.n_envs * self.n_steps) // self.nminibatches
                t_start          = time.time()
                frac             = 1.0 - (update - 1.0) / n_updates
                lr_now           = self.learning_rate(frac)
                cliprange_now    = self.cliprange(frac)
                cliprange_vf_now = cliprange_vf(frac)

                callback.on_rollout_start()

                rollouts = self.runner.run(callback) #execute episode

                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break


                # Unpack
                i = 0
                steps_used = rollouts[-1]
                for rollout in rollouts[0]:
                    obs, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward, success_stages = rollout
                    model = self.models[i]
                    # calc = len(true_reward)
                    # model.n_batch = calc

                    if model.n_batch == 0:
                        b = 0
                    else:
                        self.ep_info_buf.extend(ep_infos)   
                        mb_loss_vals = []
                        if states is None:  # nonrecurrent version
                            update_fac = max(model.n_batch // self.nminibatches // self.noptepochs, 1)
                            inds = np.arange(len(obs))#np.arange(model.n_batch)
                            for epoch_num in range(self.noptepochs):
                                np.random.shuffle(inds)
                                for start in range(0, model.n_batch, batch_size):
                                    timestep = self.num_timesteps // update_fac + ((epoch_num * model.n_batch + start) // batch_size)
                                    end      = start + batch_size
                                    mbinds   = inds[start:end]
                                    if len(obs) > 1:
                                        slices   = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs))
                                        mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, model=self.models[i], writer=writer, update=timestep, cliprange_vf=cliprange_vf_now))
                                    else:
                                        mb_loss_vals.append((0,0,0,0,0))
                            i+=1
                        else:
                            exit("does not support recurrent version")

                        loss_vals = np.mean(mb_loss_vals, axis=0)
                        t_now     = time.time()
                        fps       = int(model.n_batch / (t_now - t_start))

                        if writer is not None:
                            n_steps = model.n_batch
                            try:
                                total_episode_reward_logger(self.episode_reward, true_reward.reshape((self.n_envs, n_steps)), masks.reshape((self.n_envs, n_steps)), writer, self.num_timesteps)
                            except:
                                print("Failed to log episode reward of shape {}".format(true_reward.shape))
                            summary = tf.Summary(value=[tf.Summary.Value(tag='episode_reward/Successful stages',
                                                                         simple_value=success_stages)])
                            writer.add_summary(summary, self.num_timesteps)
                            #@TODO plot in one graph:
                            for i, val in enumerate(steps_used):
                                summary = tf.Summary(value=[tf.Summary.Value(tag='episode_reward/Used steps net {}'.format(i),
                                                                              simple_value=val)])
                                writer.add_summary(summary, self.num_timesteps)

                        if self.verbose >= 1 and (update % log_interval == 0 or update == 1):
                            explained_var = explained_variance(values, returns)
                            logger.logkv("serial_timesteps", update * self.n_steps)
                            logger.logkv("n_updates", update)
                            logger.logkv("total_timesteps", self.num_timesteps)
                            logger.logkv("fps", fps)
                            logger.logkv("Steps", steps_used)
                            logger.logkv("explained_variance", float(explained_var))
                            if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0:
                                logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf]))
                                logger.logkv('ep_len_mean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf]))
                            logger.logkv('time_elapsed', t_start - t_first_start)
                            for (loss_val, loss_name) in zip(loss_vals, model.loss_names):
                                logger.logkv(loss_name, loss_val)
                            logger.dumpkvs()

            callback.on_training_end()
            return self