Exemple #1
0
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        """
        Create Prioritized Replay buffer.

        See Also ReplayBuffer.__init__

        :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories
            are dropped.
        :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization)
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, obs_t, action, reward, obs_tp1, done):
        """
        add a new transition to the buffer

        :param obs_t: (Any) the last observation
        :param action: ([float]) the action
        :param reward: (float) the reward of the transition
        :param obs_tp1: (Any) the current observation
        :param done: (bool) is the episode done
        """
        idx = self._next_idx
        super().add(obs_t, action, reward, obs_tp1, done)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        for _ in range(batch_size):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0,
                                                      len(self._storage) - 1)
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, beta=0):
        """
        Sample a batch of experiences.

        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.

        :param batch_size: (int) How many transitions to sample.
        :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction)
        :return:
            - obs_batch: (np.ndarray) batch of observations
            - act_batch: (numpy float) batch of actions executed given obs_batch
            - rew_batch: (numpy float) rewards received as results of executing act_batch
            - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch
            - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode
                and 0 otherwise.
            - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of
                each sampled transition
            - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences
        """
        assert beta > 0

        idxes = self._sample_proportional(batch_size)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        """
        Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        :param idxes: ([int]) List of idxes of sampled transitions
        :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes
            denoted by variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)
Exemple #2
0
class TwoWayPrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, obs_t, action, reward, obs_tp1, done):
        idx = self._next_idx
        super().add(obs_t, action, reward, obs_tp1, done)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def extend(self, obs_t, action, reward, obs_tp1, done):
        idx = self._next_idx
        super().extend(obs_t, action, reward, obs_tp1, done)
        while idx != self._next_idx:
            self._it_sum[idx] = self._max_priority**self._alpha
            self._it_min[idx] = self._max_priority**self._alpha
            idx = (idx + 1) % self._maxsize

    def _sample_proportional(self, batch_size):
        mass = []
        total = self._it_sum.sum(0, len(self._storage) - 1)
        # TODO(szymon): should we ensure no repeats?
        mass = np.random.random(size=batch_size) * total
        idx = self._it_sum.find_prefixsum_idx(mass)
        return idx

    def sample(self,
               batch_size: int,
               beta: float = 0,
               env: Optional[VecNormalize] = None):
        assert beta > 0

        idxes = self._sample_proportional(batch_size)
        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)
        p_sample = self._it_sum[idxes] / self._it_sum.sum()
        weights = (p_sample * len(self._storage))**(-beta) / max_weight
        encoded_sample = self._encode_sample(idxes, env=env)
        return tuple(list(encoded_sample) + [weights, idxes])

    def _sample_invproportional(self, batch_size):
        mass = []
        total = self._it_sum.sum(len(self._storage) - 1, 0)
        # TODO(szymon): should we ensure no repeats?
        mass = np.random.random(size=batch_size) * total
        idx = self._it_sum.find_prefixsum_idx(mass)
        return idx

    def invsample(self,
                  batch_size: int,
                  beta: float = 0,
                  env: Optional[VecNormalize] = None):
        assert beta > 0

        idxes = self._sample_invproportional(batch_size)
        encoded_sample = self._encode_sample(idxes, env=env)
        return list(encoded_sample)

    def update_priorities(self, idxes, priorities):
        assert len(idxes) == len(priorities)
        assert np.min(priorities) > 0
        assert np.min(idxes) >= 0
        assert np.max(idxes) < len(self.storage)
        self._it_sum[idxes] = priorities**self._alpha
        self._it_min[idxes] = priorities**self._alpha

        self._max_priority = max(self._max_priority, np.max(priorities))
Exemple #3
0
def test_max_interval_tree():
    """
    test Segment Tree data structure
    """
    tree = MinSegmentTree(4)

    tree[0] = 1.0
    tree[2] = 0.5
    tree[3] = 3.0

    assert np.isclose(tree.min(), 0.5)
    assert np.isclose(tree.min(0, 2), 1.0)
    assert np.isclose(tree.min(0, 3), 0.5)
    assert np.isclose(tree.min(0, -1), 0.5)
    assert np.isclose(tree.min(2, 4), 0.5)
    assert np.isclose(tree.min(3, 4), 3.0)

    tree[2] = 0.7

    assert np.isclose(tree.min(), 0.7)
    assert np.isclose(tree.min(0, 2), 1.0)
    assert np.isclose(tree.min(0, 3), 0.7)
    assert np.isclose(tree.min(0, -1), 0.7)
    assert np.isclose(tree.min(2, 4), 0.7)
    assert np.isclose(tree.min(3, 4), 3.0)

    tree[2] = 4.0

    assert np.isclose(tree.min(), 1.0)
    assert np.isclose(tree.min(0, 2), 1.0)
    assert np.isclose(tree.min(0, 3), 1.0)
    assert np.isclose(tree.min(0, -1), 1.0)
    assert np.isclose(tree.min(2, 4), 3.0)
    assert np.isclose(tree.min(2, 3), 4.0)
    assert np.isclose(tree.min(2, -1), 4.0)
    assert np.isclose(tree.min(3, 4), 3.0)
Exemple #4
0
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        """
        Create Prioritized Replay buffer.

        See Also ReplayBuffer.__init__

        :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories
            are dropped.
        :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization)
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, obs_t, action, reward, obs_tp1, done):
        """
        add a new transition to the buffer

        :param obs_t: (Any) the last observation
        :param action: ([float]) the action
        :param reward: (float) the reward of the transition
        :param obs_tp1: (Any) the current observation
        :param done: (bool) is the episode done
        """
        idx = self._next_idx
        super().add(obs_t, action, reward, obs_tp1, done)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def extend(self, obs_t, action, reward, obs_tp1, done):
        """
        add a new batch of transitions to the buffer

        :param obs_t: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the last batch of observations
        :param action: (Union[Tuple[Union[np.ndarray, int]]], np.ndarray]) the batch of actions
        :param reward: (Union[Tuple[float], np.ndarray]) the batch of the rewards of the transition
        :param obs_tp1: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the current batch of observations
        :param done: (Union[Tuple[bool], np.ndarray]) terminal status of the batch

        Note: uses the same names as .add to keep compatibility with named argument passing
            but expects iterables and arrays with more than 1 dimensions
        """
        idx = self._next_idx
        super().extend(obs_t, action, reward, obs_tp1, done)
        while idx != self._next_idx:
            self._it_sum[idx] = self._max_priority**self._alpha
            self._it_min[idx] = self._max_priority**self._alpha
            idx = (idx + 1) % self._maxsize

    def _sample_proportional(self, batch_size):
        mass = []
        total = self._it_sum.sum(0, len(self._storage) - 1)
        # TODO(szymon): should we ensure no repeats?
        mass = np.random.random(size=batch_size) * total
        idx = self._it_sum.find_prefixsum_idx(mass)
        return idx

    def sample(self,
               batch_size: int,
               beta: float = 0,
               env: Optional[VecNormalize] = None):
        """
        Sample a batch of experiences.

        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.

        :param batch_size: (int) How many transitions to sample.
        :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction)
        :param env: (Optional[VecNormalize]) associated gym VecEnv
            to normalize the observations/rewards when sampling
        :return:
            - obs_batch: (np.ndarray) batch of observations
            - act_batch: (numpy float) batch of actions executed given obs_batch
            - rew_batch: (numpy float) rewards received as results of executing act_batch
            - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch
            - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode
                and 0 otherwise.
            - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of
                each sampled transition
            - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences
        """
        assert beta > 0

        idxes = self._sample_proportional(batch_size)
        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)
        p_sample = self._it_sum[idxes] / self._it_sum.sum()
        weights = (p_sample * len(self._storage))**(-beta) / max_weight
        encoded_sample = self._encode_sample(idxes, env=env)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        """
        Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        :param idxes: ([int]) List of idxes of sampled transitions
        :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes
            denoted by variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        assert np.min(priorities) > 0
        assert np.min(idxes) >= 0
        assert np.max(idxes) < len(self.storage)
        self._it_sum[idxes] = priorities**self._alpha
        self._it_min[idxes] = priorities**self._alpha

        self._max_priority = max(self._max_priority, np.max(priorities))
Exemple #5
0
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        """Create Prioritized Replay buffer.
    Parameters
    ----------
    size: int
        Max number of transitions to store in the buffer. When the buffer
        overflows the old memories are dropped.
    alpha: float
        how much prioritization is used
        (0 - no prioritization, 1 - full prioritization)
    See Also
    --------
    ReplayBuffer.__init__
    """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha > 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, *args, **kwargs):
        """See ReplayBuffer.store_effect"""
        idx = self._next_idx
        super().add(*args, **kwargs)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        for _ in range(batch_size):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0,
                                                      len(self._storage) - 1)
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, beta):
        """Sample a batch of experiences.
    compared to ReplayBuffer.sample
    it also returns importance weights and idxes
    of sampled experiences.
    Parameters
    ----------
    batch_size: int
        How many transitions to sample.
    beta: float
        To what degree to use importance weights
        (0 - no corrections, 1 - full correction)
    Returns
    -------
    obs_batch: np.array
        batch of observations
    act_batch: np.array
        batch of actions executed given obs_batch
    R_batch: np.array
        returns received as results of executing act_batch
    weights: np.array
        Array of shape (batch_size,) and dtype np.float32
        denoting importance weight of each sampled transition
    idxes: np.array
        Array of shape (batch_size,) and dtype np.int32
        idexes in buffer of sampled experiences
    """

        idxes = self._sample_proportional(batch_size)

        if beta > 0:
            weights = []
            p_min = self._it_min.min() / self._it_sum.sum()
            max_weight = (p_min * len(self._storage))**(-beta)

            for idx in idxes:
                p_sample = self._it_sum[idx] / self._it_sum.sum()
                weight = (p_sample * len(self._storage))**(-beta)
                weights.append(weight / max_weight)
            weights = np.array(weights)
        else:
            weights = np.ones_like(idxes, dtype=np.float32)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        """Update priorities of sampled transitions.
    sets priority of transition at index idxes[i] in buffer
    to priorities[i].
    Parameters
    ----------
    idxes: [int]
        List of idxes of sampled transitions
    priorities: [float]
        List of updated priorities corresponding to
        transitions at the sampled idxes denoted by
        variable `idxes`.
    """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            priority = max(priority, 1e-6)
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)