Exemple #1
0
    def setup_model(self):
        with SetVerbosity(self.verbose):
            self.graph = tf.Graph()
            with self.graph.as_default():
                self.set_random_seed(self.seed)
                self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess,
                                                 graph=self.graph)

                self.replay_buffer = ReplayBuffer(self.buffer_size)

                with tf.variable_scope("input", reuse=False):
                    # Create policy and target TF objects
                    self.policy_tf = self.policy(self.sess,
                                                 self.observation_space,
                                                 self.action_space,
                                                 **self.policy_kwargs)
                    self.target_policy_tf = self.policy(
                        self.sess, self.observation_space, self.action_space,
                        **self.policy_kwargs)

                    # Initialize Placeholders
                    self.observations_ph = self.policy_tf.obs_ph
                    # Normalized observation for pixels
                    self.processed_obs_ph = self.policy_tf.processed_obs
                    self.next_observations_ph = self.target_policy_tf.obs_ph
                    self.processed_next_obs_ph = self.target_policy_tf.processed_obs
                    self.action_target = self.target_policy_tf.action_ph
                    self.terminals_ph = tf.placeholder(tf.float32,
                                                       shape=(None, 1),
                                                       name='terminals')
                    self.rewards_ph = tf.placeholder(tf.float32,
                                                     shape=(None, 1),
                                                     name='rewards')
                    self.actions_ph = tf.placeholder(tf.float32,
                                                     shape=(None, ) +
                                                     self.action_space.shape,
                                                     name='actions')
                    self.learning_rate_ph = tf.placeholder(
                        tf.float32, [], name="learning_rate_ph")

                with tf.variable_scope("model", reuse=False):
                    # Create the policy
                    self.policy_out = policy_out = self.policy_tf.make_actor(
                        self.processed_obs_ph)
                    # Use two Q-functions to improve performance by reducing overestimation bias
                    qf1, qf2 = self.policy_tf.make_critics(
                        self.processed_obs_ph, self.actions_ph)
                    # Q value when following the current policy
                    qf1_pi, _ = self.policy_tf.make_critics(
                        self.processed_obs_ph, policy_out, reuse=True)

                with tf.variable_scope("target", reuse=False):
                    # Create target networks
                    target_policy_out = self.target_policy_tf.make_actor(
                        self.processed_next_obs_ph)
                    # Target policy smoothing, by adding clipped noise to target actions
                    target_noise = tf.random_normal(
                        tf.shape(target_policy_out),
                        stddev=self.target_policy_noise)
                    target_noise = tf.clip_by_value(target_noise,
                                                    -self.target_noise_clip,
                                                    self.target_noise_clip)
                    # Clip the noisy action to remain in the bounds [-1, 1] (output of a tanh)
                    noisy_target_action = tf.clip_by_value(
                        target_policy_out + target_noise, -1, 1)
                    # Q values when following the target policy
                    qf1_target, qf2_target = self.target_policy_tf.make_critics(
                        self.processed_next_obs_ph, noisy_target_action)

                with tf.variable_scope("loss", reuse=False):
                    # Take the min of the two target Q-Values (clipped Double-Q Learning)
                    min_qf_target = tf.minimum(qf1_target, qf2_target)

                    # Targets for Q value regression
                    q_backup = tf.stop_gradient(self.rewards_ph +
                                                (1 - self.terminals_ph) *
                                                self.gamma * min_qf_target)

                    # Compute Q-Function loss
                    qf1_loss = tf.reduce_mean((q_backup - qf1)**2)
                    qf2_loss = tf.reduce_mean((q_backup - qf2)**2)

                    qvalues_losses = qf1_loss + qf2_loss

                    # Policy loss: maximise q value
                    self.policy_loss = policy_loss = -tf.reduce_mean(qf1_pi)

                    # Policy train op
                    # will be called only every n training steps,
                    # where n is the policy delay
                    policy_optimizer = tf.train.AdamOptimizer(
                        learning_rate=self.learning_rate_ph)
                    policy_train_op = policy_optimizer.minimize(
                        policy_loss, var_list=get_vars('model/pi'))
                    self.policy_train_op = policy_train_op

                    # Q Values optimizer
                    qvalues_optimizer = tf.train.AdamOptimizer(
                        learning_rate=self.learning_rate_ph)
                    qvalues_params = get_vars('model/values_fn/')

                    # Q Values and policy target params
                    source_params = get_vars("model/")
                    target_params = get_vars("target/")

                    # Polyak averaging for target variables
                    self.target_ops = [
                        tf.assign(target,
                                  (1 - self.tau) * target + self.tau * source)
                        for target, source in zip(target_params, source_params)
                    ]

                    # Initializing target to match source variables
                    target_init_op = [
                        tf.assign(target, source)
                        for target, source in zip(target_params, source_params)
                    ]

                    train_values_op = qvalues_optimizer.minimize(
                        qvalues_losses, var_list=qvalues_params)

                    self.infos_names = ['qf1_loss', 'qf2_loss']
                    # All ops to call during one training step
                    self.step_ops = [
                        qf1_loss, qf2_loss, qf1, qf2, train_values_op
                    ]

                    # Monitor losses and entropy in tensorboard
                    tf.summary.scalar('policy_loss', policy_loss)
                    tf.summary.scalar('qf1_loss', qf1_loss)
                    tf.summary.scalar('qf2_loss', qf2_loss)
                    tf.summary.scalar('learning_rate',
                                      tf.reduce_mean(self.learning_rate_ph))

                # Retrieve parameters that must be saved
                self.params = get_vars("model")
                self.target_params = get_vars("target/")

                # Initialize Variables and target network
                with self.sess.as_default():
                    self.sess.run(tf.global_variables_initializer())
                    self.sess.run(target_init_op)

                self.summary = tf.summary.merge_all()
Exemple #2
0
    def setup_model(self):
        with SetVerbosity(self.verbose):
            self.graph = tf.Graph()
            with self.graph.as_default():
                n_cpu = multiprocessing.cpu_count()
                if sys.platform == 'darwin':
                    n_cpu //= 2
                self.sess = tf_util.make_session(num_cpu=n_cpu,
                                                 graph=self.graph)

                self.buffer_is_prioritized = self.buffer_type.__name__ in [
                    "PrioritizedReplayBuffer", "RankPrioritizedReplayBuffer"
                ]

                if self.replay_buffer is None:
                    if self.buffer_is_prioritized:
                        if self.num_timesteps is not None and self.prioritization_starts > self.num_timesteps or self.prioritization_starts > 0:
                            self.replay_buffer = ReplayBuffer(self.buffer_size)
                        else:
                            buffer_kw = {
                                "size": self.buffer_size,
                                "alpha": 0.7
                            }
                            if self.buffer_type.__name__ == "RankPrioritizedReplayBuffer":
                                buffer_kw.update({
                                    "learning_starts":
                                    self.prioritization_starts,
                                    "batch_size": self.batch_size
                                })
                            self.replay_buffer = self.buffer_type(**buffer_kw)
                    else:
                        self.replay_buffer = self.buffer_type(self.buffer_size)

                #self.replay_buffer = DiscrepancyReplayBuffer(self.buffer_size, scorer=self.policy_tf.get_q_discrepancy)

                with tf.variable_scope("input", reuse=False):
                    # Create policy and target TF objects
                    self.policy_tf = self.policy(self.sess,
                                                 self.observation_space,
                                                 self.action_space,
                                                 **self.policy_kwargs)
                    self.target_policy_tf = self.policy(
                        self.sess, self.observation_space, self.action_space,
                        **self.policy_kwargs)

                    # Initialize Placeholders
                    self.observations_ph = self.policy_tf.obs_ph
                    # Normalized observation for pixels
                    self.processed_obs_ph = self.policy_tf.processed_obs
                    self.next_observations_ph = self.target_policy_tf.obs_ph
                    self.processed_next_obs_ph = self.target_policy_tf.processed_obs
                    self.action_target = self.target_policy_tf.action_ph
                    self.terminals_ph = tf.placeholder(tf.float32,
                                                       shape=(None, 1),
                                                       name='terminals')
                    self.rewards_ph = tf.placeholder(tf.float32,
                                                     shape=(None, 1),
                                                     name='rewards')
                    self.actions_ph = tf.placeholder(tf.float32,
                                                     shape=(None, ) +
                                                     self.action_space.shape,
                                                     name='actions')
                    self.learning_rate_ph = tf.placeholder(
                        tf.float32, [], name="learning_rate_ph")

                with tf.variable_scope("model", reuse=False):
                    # Create the policy
                    self.policy_out = policy_out = self.policy_tf.make_actor(
                        self.processed_obs_ph)
                    self.policy_test = policy_test = self.policy_tf.make_actor(
                        self.processed_obs_ph, scope="pi_t")
                    # Use two Q-functions to improve performance by reducing overestimation bias
                    qf1, qf2 = self.policy_tf.make_critics(
                        self.processed_obs_ph, self.actions_ph)
                    # Q value when following the current policy
                    qf1_pi, qf2_pi = self.policy_tf.make_critics(
                        self.processed_obs_ph, policy_out, reuse=True)
                    qf1_pi_t, _ = self.policy_tf.make_critics(
                        self.processed_obs_ph, policy_test, reuse=True)

                with tf.variable_scope("target", reuse=False):
                    # Create target networks
                    target_policy_out = self.target_policy_tf.make_actor(
                        self.processed_next_obs_ph)
                    # Target policy smoothing, by adding clipped noise to target actions
                    target_noise = tf.random_normal(
                        tf.shape(target_policy_out),
                        stddev=self.target_policy_noise)
                    target_noise = tf.clip_by_value(target_noise,
                                                    -self.target_noise_clip,
                                                    self.target_noise_clip)
                    # Clip the noisy action to remain in the bounds [-1, 1] (output of a tanh)
                    noisy_target_action = tf.clip_by_value(
                        target_policy_out + target_noise, -1, 1)
                    # Q values when following the target policy
                    qf1_target, qf2_target = self.target_policy_tf.make_critics(
                        self.processed_next_obs_ph, noisy_target_action)

                with tf.variable_scope("loss", reuse=False):
                    # Take the min of the two target Q-Values (clipped Double-Q Learning)
                    min_qf_target = tf.minimum(qf1_target, qf2_target)

                    # Targets for Q value regression
                    q_backup = tf.stop_gradient(self.rewards_ph +
                                                (1 - self.terminals_ph) *
                                                self.gamma * min_qf_target)

                    # Compute Q-Function loss
                    if self.buffer_is_prioritized:
                        self.is_weights_ph = tf.placeholder(tf.float32,
                                                            shape=(None, 1),
                                                            name="is_weights")
                        qf1_loss = tf.reduce_mean(self.is_weights_ph *
                                                  (q_backup - qf1)**2)
                        qf2_loss = tf.reduce_mean(self.is_weights_ph *
                                                  (q_backup - qf2)**2)
                    else:
                        qf1_loss = tf.reduce_mean((q_backup - qf1)**2)
                        qf2_loss = tf.reduce_mean((q_backup - qf2)**2)

                    q_discrepancy = tf.abs(qf1_pi - qf2_pi)
                    self.q_disc_strength_ph = tf.placeholder(
                        tf.float32, [], name="q_disc_strength_ph")
                    self.q_disc_strength_schedule = ExponentialSchedule(
                        int(1e5), 30, 0, rate=10)

                    qvalues_losses = qf1_loss + qf2_loss

                    rew_loss = tf.reduce_mean(qf1_pi)
                    q_disc_loss = tf.reduce_mean(
                        q_discrepancy
                    )  #self.q_disc_strength_ph * tf.reduce_mean(q_discrepancy)
                    action_loss = self.action_l2_scale * tf.nn.l2_loss(
                        self.policy_out)

                    # Policy loss: maximise q value
                    self.policy_loss = policy_loss = -(
                        rew_loss + q_disc_loss) + action_loss
                    self.policy_loss_t = policy_loss_t = -tf.reduce_mean(
                        qf1_pi_t)

                    # Policy train op
                    # will be called only every n training steps,
                    # where n is the policy delay
                    policy_optimizer = tf.train.AdamOptimizer(
                        learning_rate=self.learning_rate_ph)
                    policy_train_op = policy_optimizer.minimize(
                        policy_loss, var_list=get_vars('model/pi'))
                    self.policy_train_op = policy_train_op

                    policy_optimizer_t = tf.train.AdamOptimizer(
                        learning_rate=self.learning_rate_ph)
                    policy_train_op_t = policy_optimizer_t.minimize(
                        policy_loss_t, var_list=get_vars('model/pi_t'))
                    self.policy_train_op_t = policy_train_op_t

                    # Q Values optimizer
                    qvalues_optimizer = tf.train.AdamOptimizer(
                        learning_rate=self.learning_rate_ph)
                    qvalues_params = get_vars('model/values_fn/')

                    # Q Values and policy target params
                    source_params = get_vars("model/")
                    target_params = get_vars("target/")

                    source_params = [
                        param for param in source_params
                        if "pi_t" not in param.name
                    ]

                    # Polyak averaging for target variables
                    self.target_ops = [
                        tf.assign(target,
                                  (1 - self.tau) * target + self.tau * source)
                        for target, source in zip(target_params, source_params)
                    ]

                    # Initializing target to match source variables
                    target_init_op = [
                        tf.assign(target, source)
                        for target, source in zip(target_params, source_params)
                    ]

                    train_values_op = qvalues_optimizer.minimize(
                        qvalues_losses, var_list=qvalues_params)

                    self.infos_names = ['qf1_loss', 'qf2_loss']
                    # All ops to call during one training step
                    self.step_ops = [
                        qf1_loss, qf2_loss, qf1, qf2, train_values_op,
                        q_discrepancy
                    ]

                    # Monitor losses and entropy in tensorboard
                    tf.summary.scalar("rew_loss", rew_loss)
                    tf.summary.scalar("q_disc_loss", q_disc_loss)
                    tf.summary.scalar("action_loss", action_loss)
                    tf.summary.scalar('policy_loss', policy_loss)
                    tf.summary.scalar("policy_loss_t", policy_loss_t)
                    tf.summary.scalar('qf1_loss', qf1_loss)
                    tf.summary.scalar('qf2_loss', qf2_loss)
                    tf.summary.scalar('learning_rate',
                                      tf.reduce_mean(self.learning_rate_ph))

                # Retrieve parameters that must be saved
                self.params = get_vars("model")
                self.target_params = get_vars("target/")

                # Initialize Variables and target network
                with self.sess.as_default():
                    self.sess.run(tf.global_variables_initializer())
                    self.sess.run(target_init_op)

                self.summary = tf.summary.merge_all()