Exemple #1
0
                                       modpath,
                                       data,
                                       pad,
                                       maxiter=maxiter,
                                       gtol=gtol,
                                       anneal=anneal,
                                       resnorm=resnorm,
                                       loss=loss,
                                       log=logit,
                                       inverse=inverse)
    #

    initval = None
    initval = np.random.normal(0, 1, size=nc**3).reshape(nc, nc, nc).astype(
        config['dtype'])  #truth
    if stdinit: initval = standardinit(config, datap, hposd, final, R=8)
    #initval = tools.readbigfile(dpath + ftype%(bs, nc, 900, step) + 'mesh/s/')
    #initval = np.ones((nc, nc, nc))
    if truthinit: initval = truth.copy()

    losses = []
    literals = {'losses': losses, 'truemeshes': truemeshes, 'bs': bs, 'nc': nc}
    tstart = time()
    lcallback = lambda x: loss_callback(x,
                                        literals=literals,
                                        nprint=nprint,
                                        nsave=nsave,
                                        maxiter=maxiter,
                                        t0=tstart)

    with tf.Session(graph=recong) as session:
Exemple #2
0
    print('\nDo reconstruction\n')

    recong = rmods.graphhposft1(config,
                                modpath,
                                data,
                                pad,
                                maxiter=maxiter,
                                gtol=gtol,
                                anneal=anneal,
                                resnorm=resnorm)
    #

    initval = None
    initval = np.random.normal(1, 0.5, size=nc**3).reshape(nc, nc, nc).astype(
        config['dtype'])  #truth
    initval = standardinit(config, data, hposd, final, R=8)
    #initval = tools.readbigfile(dpath + ftype%(bs, nc, 900, step) + 'mesh/s/')
    #initval = np.ones((nc, nc, nc))
    #initval = truth.copy()

    losses = []
    literals = {'losses': losses, 'truemeshes': truemeshes, 'bs': bs, 'nc': nc}
    tstart = time()
    lcallback = lambda x: loss_callback(x,
                                        literals=literals,
                                        nprint=nprint,
                                        nsave=nsave,
                                        maxiter=maxiter,
                                        t0=tstart)

    with tf.Session(graph=recong) as session:
Exemple #3
0
def main(_):

    infield = True
    dtype = tf.float32
    mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)
    nc, bs = FLAGS.nc, FLAGS.box_size
    a0, a, nsteps = FLAGS.a0, FLAGS.af, FLAGS.nsteps
    stages = np.linspace(a0, a, nsteps, endpoint=True)
    numd = 1e-3

    ##Begin here
    klin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[0]
    plin = np.loadtxt('../flowpm/data/Planck15_a1p00.txt').T[1]
    ipklin = iuspline(klin, plin)

    #pypath = '/global/cscratch1/sd/chmodi/cosmo4d/output/version2/L0400_N0128_05step-fof/lhd_S0100/n10/opt_s999_iM12-sm3v25off/meshes/'
    final = tools.readbigfile(
        '/project/projectdirs/m3058/chmodi/cosmo4d/data/L0400_N0128_S0100_05step/mesh/d/'
    )
    ic = tools.readbigfile(
        '/project/projectdirs/m3058/chmodi/cosmo4d/data/L0400_N0128_S0100_05step/mesh/s/'
    )
    fpos = tools.readbigfile(
        '/project/projectdirs/m3058/chmodi/cosmo4d/data/L0400_N0128_S0100_05step/dynamic/1/Position/'
    )
    aa = 1
    zz = 1 / aa - 1
    rsdfactor = float(100 / (aa**2 * cosmo.H(zz).value**1))
    print('\nRsdfactor used is : ', rsdfactor)

    hpos = tools.readbigfile(
        '/project/projectdirs/m3058/chmodi/cosmo4d/data/L0400_N0512_S0100_40step/FOF/PeakPosition//'
    )[1:int(bs**3 * numd)]
    hvel = tools.readbigfile(
        '/project/projectdirs/m3058/chmodi/cosmo4d/data/L0400_N0512_S0100_40step/FOF/CMVelocity//'
    )[1:int(bs**3 * numd)]
    rsdpos = hpos + hvel * rsdfactor * np.array([0, 0, 1])
    print('Effective displacement : ', (hvel[:, -1] * rsdfactor).std())
    hmass = tools.readbigfile(
        '/project/projectdirs/m3058/chmodi/cosmo4d/data/L0400_N0512_S0100_40step/FOF/Mass//'
    )[1:int(bs**3 * numd)].flatten()

    meshpos = tools.paintcic(rsdpos, bs, nc)
    meshmass = tools.paintcic(rsdpos, bs, nc, hmass.flatten() * 1e10)
    data = meshmass
    kv = tools.fftk([nc, nc, nc], bs, symmetric=True, dtype=np.float32)
    datasm = tools.fingauss(data, kv, 3, np.pi * nc / bs)
    ic, data = np.expand_dims(ic, 0), np.expand_dims(data,
                                                     0).astype(np.float32)
    datasm = np.expand_dims(datasm, 0).astype(np.float32)
    print("Min in data : %0.4e" % datasm.min())

    #

    ####################################################

    stdinit = srecon.standardinit(bs, nc, meshpos, hpos, final, R=8)
    recon_estimator = tf.estimator.Estimator(model_fn=model_fn,
                                             model_dir=fpath)

    def predict_input_fn(data=data,
                         M0=0.,
                         w=3.,
                         R0=0.,
                         off=None,
                         istd=None,
                         x0=None):
        features = {}
        features['datasm'] = data
        features['rsdfactor'] = rsdfactor
        features['M0'] = M0
        features['w'] = w
        features['R0'] = R0
        features['off'] = off
        features['istd'] = istd
        features['x0'] = x0
        return features, None

    eval_results = recon_estimator.predict(
        input_fn=lambda: predict_input_fn(x0=ic), yield_single_examples=False)

    for i, pred in enumerate(eval_results):
        if i > 0: break

    suff = '-model'
    dg.saveimfig(suff, [pred['ic'], pred['model']], [ic, data],
                 fpath + '/figs/')
    dg.save2ptfig(suff, [pred['ic'], pred['model']], [ic, data],
                  fpath + '/figs/', bs)
    np.save(fpath + '/reconmeshes/ic_true' + suff, pred['ic'])
    np.save(fpath + '/reconmeshes/fin_true' + suff, pred['final'])
    np.save(fpath + '/reconmeshes/model_true' + suff, pred['model'])

    #
    randominit = np.random.normal(size=data.size).reshape(data.shape)
    #eval_results = recon_estimator.predict(input_fn=lambda : predict_input_fn(x0 = np.expand_dims(stdinit, 0)), yield_single_examples=False)
    eval_results = recon_estimator.predict(
        input_fn=lambda: predict_input_fn(x0=randominit),
        yield_single_examples=False)

    for i, pred in enumerate(eval_results):
        if i > 0: break

    suff = '-init'
    dg.saveimfig(suff, [pred['ic'], pred['model']], [ic, data],
                 fpath + '/figs/')
    dg.save2ptfig(suff, [pred['ic'], pred['model']], [ic, data],
                  fpath + '/figs/', bs)
    np.save(fpath + '/reconmeshes/ic_init' + suff, pred['ic'])
    np.save(fpath + '/reconmeshes/fin_init' + suff, pred['final'])
    np.save(fpath + '/reconmeshes/model_init' + suff, pred['model'])

    #
    # Train and evaluate model.
    mms = [1e12, 1e11]
    wws = [1., 2., 3.]
    RRs = [4., 2., 1., 0.5, 0.]
    niter = 100
    iiter = 0

    for mm in mms:

        noisefile = '/project/projectdirs/m3058/chmodi/cosmo4d/train/L0400_N0128_05step-n10/width_3/Wts_30_10_1/r1rf1/hlim-13_nreg-43_batch-5/eluWts-10_5_1/blim-20_nreg-23_batch-100/hist_M%d_na.txt' % (
            np.log10(mm) * 10)
        offset, ivar = setnoise(datasm, noisefile, noisevar=0.25)
        istd = ivar**0.5
        if not FLAGS.offset: offset = None
        if not FLAGS.istd: istd = None

        for R0 in RRs:

            for ww in wws:

                print('\nFor iteration %d\n' % iiter)
                print('With mm=%0.2e, R0=%0.2f, ww=%d \n' % (mm, R0, ww))

                def train_input_fn():
                    features = {}
                    features['datasm'] = datasm
                    features['rsdfactor'] = rsdfactor
                    features['M0'] = mm
                    features['w'] = ww
                    features['R0'] = R0
                    features['off'] = offset
                    features['istd'] = istd
                    features['x0'] = np.expand_dims(
                        stdinit, 0
                    )  #np.random.normal(size=datasm.size).reshape(datasm.shape)
                    features['lr'] = 0.01
                    return features, None

                recon_estimator.train(input_fn=train_input_fn,
                                      max_steps=iiter + niter)
                eval_results = recon_estimator.predict(
                    input_fn=predict_input_fn, yield_single_examples=False)

                for i, pred in enumerate(eval_results):
                    if i > 0: break

                iiter += niter  #
                suff = '-%d-M%d-R%d-w%d' % (iiter, np.log10(mm), R0, ww)
                dg.saveimfig(suff, [pred['ic'], pred['model']], [ic, data],
                             fpath + '/figs/')
                dg.save2ptfig(suff, [pred['ic'], pred['model']], [ic, data],
                              fpath + '/figs/', bs)
                suff = '-M%d-R%d-w%d' % (np.log10(mm), R0, ww)
                np.save(fpath + '/reconmeshes/ic' + suff, pred['ic'])
                np.save(fpath + '/reconmeshes/fin' + suff, pred['final'])
                np.save(fpath + '/reconmeshes/model' + suff, pred['model'])

        RRs = [1., 0.5, 0.]
        wws = [3.]
        niter = 200

    sys.exit(0)

    ##
    exit(0)