Exemple #1
0
def extract_masks(im, abs_threshold=1000, output='', report={}):
    """Generate a series masks at different thresholds."""

    thresholds = [500, 1000, 2000, 3000, 4000, 5000]
    if abs_threshold not in thresholds:
        thresholds.append(abs_threshold)
        thresholds.sort()

    report['parameters']['simple_thresholds'] = thresholds

    mos = []
    c_slcs = {}
    for thr in thresholds:

        ods = 'mask_thr{:05d}'.format(thr)

        outputpath = ''
        if output:
            outputpath = output.format(ods)

        mo = prob2mask(im, lower_threshold=thr, upper_threshold=np.inf,
                       outputpath=outputpath)

        mo.load(load_data=False)
        c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
        report['centreslices'][ods] = c_slcs

        mos.append(mo)

    return mos, report
Exemple #2
0
def postproc_masks(im, thrs=[], fill_holes=True, output='', report={}):
    """Apply slicewise thresholds to data and fill holes.

    NOTE: zyx assumed
    """

    ods = 'mask_thr{:05d}'.format(0)

    im.load(load_data=False)
    if thrs:
        data = im.slice_dataset()
        mask = np.zeros(im.dims[:3], dtype='bool')
        for slc in range(0, mask.shape[0]):
            mask[slc, :, :] = data[slc, :, :] > thrs[slc]
    else:
        mask = im.slice_dataset()
    im.close()

    if fill_holes:
        for slc in range(0, mask.shape[0]):
            mask[slc, :, :] = binary_fill_holes(mask[slc, :, :])

    props = im.get_props()
    mo = write_data(mask, props, output, ods)

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report
Exemple #3
0
def extract_smooth(im, sigma=48.0, keep_dtype=True, output='', report={}):
    """Smooth the image in-plane."""

    def smooth(data, sigma, elsize):
        """Smooth data with Gaussian kernel."""

        if len(sigma) == 1:
            sigma = sigma * len(elsize)
        elif len(sigma) != len(elsize):
            raise Exception('sigma does not match dimensions')
        sigma = [sig / es for sig, es in zip(sigma, elsize)]

        data_smoothed = gaussian_filter(data, sigma)

        return data_smoothed

    ods = 'smooth'

    if not isinstance(sigma, list):
        sigma = [sigma] * 3
        sigma[im.axlab.index('z')] = 0.0

    im.load(load_data=False)
    data_smoothed = smooth(im.slice_dataset(), sigma, im.elsize)
    if keep_dtype:
        data_smoothed = data_smoothed.astype(im.dtype)
    im.close()

    props = im.get_props()
    mo = write_data(data_smoothed, props, output, ods)

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report
Exemple #4
0
def downsample_channel(image_in,
                       ch,
                       resolution_level=-1,
                       dsfacs=[1, 4, 4, 1, 1],
                       ismask=False,
                       output='',
                       report={}):
    """Downsample an image."""

    ods = 'data' if not ismask else 'mask'

    # return in case no mask provided
    if not image_in:
        return None, report, ''

    if resolution_level != -1 and not ismask:  # we should have an Imaris pyramid
        image_in = '{}/DataSet/ResolutionLevel {}'.format(
            image_in, resolution_level)

    # load data
    im = Image(image_in, permission='r')
    im.load(load_data=False)
    props = im.get_props()
    if len(im.dims) > 4:
        im.slices[im.axlab.index('t')] = slice(0, 1, 1)
        props = im.squeeze_props(props, dim=4)
    if len(im.dims) > 3:
        im.slices[im.axlab.index('c')] = slice(ch, ch + 1, 1)
        props = im.squeeze_props(props, dim=3)
    data = im.slice_dataset()
    im.close()

    # downsample
    dsfac = tuple(dsfacs[:len(data.shape)])
    if not ismask:
        data = downscale_local_mean(data, dsfac).astype('float32')
    else:
        data = block_reduce(data, dsfac, np.max)

    # generate output
    props['axlab'] = 'zyx'  # FIXME: axlab returns as string-list
    props['shape'] = data.shape
    props['elsize'] = [es * ds for es, ds in zip(im.elsize[:3], dsfac)]
    props['slices'] = None
    mo = write_data(data, props, output, ods)

    # report data
    thr = 1000
    meds_mask = data < thr
    report['medians'][ods] = get_zyx_medians(data, meds_mask)

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report, meds_mask
Exemple #5
0
def calculate_bias_field(im,
                         mask=None,
                         n_iter=50,
                         n_fitlev=4,
                         n_cps=[5, 5, 5],
                         output='',
                         report={},
                         meds_mask=''):
    """Calculate the bias field."""

    import SimpleITK as sitk

    ods = 'bias'

    # wmem images to sitk images
    dsImage = sitk.GetImageFromArray(im.ds)
    dsImage.SetSpacing(np.array(im.elsize[::-1], dtype='float'))
    dsImage = sitk.Cast(dsImage, sitk.sitkFloat32)
    if mask is not None:
        dsMask = sitk.GetImageFromArray(mask.ds[:].astype('uint8'))
        dsMask.SetSpacing(np.array(im.elsize[::-1], dtype='float'))
        dsMask = sitk.Cast(dsMask, sitk.sitkUInt8)

    # run the N4 correction
    corrector = sitk.N4BiasFieldCorrectionImageFilter()
    corrector.SetDebug(True)
    corrector.SetMaximumNumberOfIterations([n_iter] * n_fitlev)
    corrector.SetNumberOfControlPoints(n_cps)
    if mask is None:
        dsOut = corrector.Execute(dsImage)
    else:
        dsOut = corrector.Execute(dsImage, dsMask)

    # get the bias field at lowres (3D)
    data = np.stack(sitk.GetArrayFromImage(dsImage))
    data /= np.stack(sitk.GetArrayFromImage(dsOut))
    data = np.nan_to_num(data, copy=False).astype('float32')

    # generate output
    props = im.get_props()
    mo = write_data(data, props, output, ods)

    # report data
    report['medians'][ods] = get_zyx_medians(data, meds_mask)

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report
Exemple #6
0
def calculate_distance_to_edge(im, output='', report={}):
    """"Calculate the euclidian distance transform of the mask."""

    ods = 'mask_thr{:05d}_edt'.format(0)

    im.load(load_data=False)
    elsize = np.absolute(im.elsize)
    dt = np.zeros(im.ds.shape, dtype='float')
    for i, slc in enumerate(im.ds[:]):
        dt[i, :, :] = distance_transform_edt(slc, sampling=elsize[1:])

    props = im.get_props()
    mo = write_data(dt, props, output, ods)

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report
Exemple #7
0
def divide_bias_field(im, bf, output='', report={}, meds_mask=''):
    """Apply bias field correction."""

    ods = 'corr'

    data = np.copy(im.ds[:]).astype('float32')
    data /= bf.ds[:]
    data = np.nan_to_num(data, copy=False)

    props = im.get_props()
    mo = write_data(data, props, output, ods)

    report['medians'][ods] = get_zyx_medians(data, meds_mask)

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report
Exemple #8
0
def extract_mean(im, dim='c', keep_dtype=True, output='', report={}):
    """Calculate mean over channels."""

    ods = 'mean'

    im.load(load_data=False)
    props = im.get_props()
    if len(im.dims) > 4:
        props = im.squeeze_props(props, dim=4)
    if len(im.dims) > 3:
        props = im.squeeze_props(props, dim=3)

    mo = Image(output.format(ods), **props)
    mo.create()

    zdim = im.axlab.index('z')
    if im.chunks is not None:
        nslcs = im.chunks[zdim]
    else:
        nslsc = 8
    slc_thrs = []
    for zstart in range(0, im.dims[zdim], nslcs):
        zstop = min(im.dims[zdim], zstart + nslcs)
        im.slices[zdim] = mo.slices[zdim] = slice(zstart, zstop, None)
        data_mean = np.mean(im.slice_dataset(), axis=im.axlab.index(dim))
        if keep_dtype:
            data_mean = data_mean.astype(im.dtype)
        mo.write(data_mean)
        slc_thrs += list(np.median(np.reshape(data_mean, [data_mean.shape[0], -1]), axis=1))

    mo.slices = None
    mo.set_slices()

    im.close()

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report, slc_thrs