Exemple #1
0
def extract_mean(im, dim='c', keep_dtype=True, output='', report={}):
    """Calculate mean over channels."""

    ods = 'mean'

    im.load(load_data=False)
    props = im.get_props()
    if len(im.dims) > 4:
        props = im.squeeze_props(props, dim=4)
    if len(im.dims) > 3:
        props = im.squeeze_props(props, dim=3)

    mo = Image(output.format(ods), **props)
    mo.create()

    zdim = im.axlab.index('z')
    if im.chunks is not None:
        nslcs = im.chunks[zdim]
    else:
        nslsc = 8
    slc_thrs = []
    for zstart in range(0, im.dims[zdim], nslcs):
        zstop = min(im.dims[zdim], zstart + nslcs)
        im.slices[zdim] = mo.slices[zdim] = slice(zstart, zstop, None)
        data_mean = np.mean(im.slice_dataset(), axis=im.axlab.index(dim))
        if keep_dtype:
            data_mean = data_mean.astype(im.dtype)
        mo.write(data_mean)
        slc_thrs += list(np.median(np.reshape(data_mean, [data_mean.shape[0], -1]), axis=1))

    mo.slices = None
    mo.set_slices()

    im.close()

    c_slcs = {dim: get_centreslice(mo, '', dim) for dim in 'zyx'}
    report['centreslices'][ods] = c_slcs

    return mo, report, slc_thrs
Exemple #2
0
def stack_channels(images_in, outputpath=''):

    channels = []
    for image_in in images_in:
        im = Image(image_in, permission='r')
        im.load(load_data=True)
        channels.append(im.ds[:])
    data = np.stack(channels, axis=3)

    mo = Image(outputpath)
    mo.elsize = list(im.elsize) + [1]
    mo.axlab = im.axlab + 'c'
    mo.dims = data.shape
    mo.chunks = list(im.chunks) + [1]
    mo.dtype = im.dtype
    mo.set_slices()
    if outputpath:
        mo.create()
        mo.write(data)
        mo.close()

    return mo
Exemple #3
0
def apply_bias_field_full(image_in,
                          bias_in,
                          dsfacs=[1, 64, 64, 1],
                          in_place=False,
                          write_to_single_file=False,
                          blocksize_xy=1280,
                          outputpath='',
                          channel=None):
    """single-core in ~200 blocks"""

    perm = 'r+' if in_place else 'r'
    im = Image(image_in, permission=perm)
    im.load(load_data=False)

    bf = Image(bias_in, permission='r')
    bf.load(load_data=False)

    if channel is not None:
        im.slices[3] = slice(channel, channel + 1)
    if write_to_single_file:  # assuming single-channel copied file here
        mo = Image(outputpath)
        mo.load()
        mo.slices[3] = slice(0, 1, 1)

    mpi = wmeMPI(usempi=False)
    mpi_nm = wmeMPI(usempi=False)
    if blocksize_xy:
        blocksize = [im.dims[0], blocksize_xy, blocksize_xy, 1, 1]
        blockmargin = [0, im.chunks[1], im.chunks[2], 0, 0]
    else:
        blocksize = im.dims[:3] + [1, 1]
        blockmargin = [0] * len(im.dims)
    mpi.set_blocks(im, blocksize, blockmargin)
    mpi_nm.set_blocks(im, blocksize)
    mpi.scatter_series()

    for i in mpi.series:
        print(i)
        block = mpi.blocks[i]
        data_shape = list(im.slices2shape(block['slices']))
        block_nm = mpi_nm.blocks[i]
        it = zip(block['slices'], block_nm['slices'], blocksize, data_shape)
        data_shape = list(im.slices2shape(block_nm['slices']))
        data_slices = []
        for b_slc, n_slc, bs, ds in it:
            m_start = n_slc.start - b_slc.start
            m_stop = m_start + bs
            m_stop = min(m_stop, ds)
            data_slices.append(slice(m_start, m_stop, None))
        data_slices[3] = block['slices'][3]
        data_shape = list(im.slices2shape(data_slices))

        # get the fullres image block
        im.slices = block['slices']
        data = im.slice_dataset().astype('float')

        # get the upsampled bias field
        bias = get_bias_field_block(bf, im.slices, data.shape)
        data /= bias
        data = np.nan_to_num(data, copy=False)

        if in_place:
            im.slices = block_nm['slices']
            data = data[tuple(data_slices[:3])].astype(im.dtype)
            im.write(data)
        elif write_to_single_file:
            mo.slices = block_nm['slices']
            mo.slices[3] = slice(0, 1, 1)
            data = data[tuple(data_slices[:3])].astype(mo.dtype)
            mo.write(data)
        else:
            props = im.get_props()
            if len(im.dims) > 4:
                props = im.squeeze_props(props, dim=4)
            if len(im.dims) > 3:
                props = im.squeeze_props(props, dim=3)
            props['axlab'] = 'zyx'  # FIXME: axlab return as string-list
            props['shape'] = bias.shape
            props['slices'] = None
            props['dtype'] = bias.dtype
            mo = Image(block['path'], **props)  # FIXME: needs channel
            mo.create(comm=mpi.comm)
            mo.slices = None
            mo.set_slices()
            mo.write(data=bias)
            mo.close()

    im.close()
    bf.close()