Exemple #1
0
def main():
    """The selected databases/kwargs/event found for different algorithms
        |   Algorithm   | Databases | kwargs | Event |
        |:-------------:|:---------:|:------:|:-----:|
        | noisy_max_v1a |           |        |       |
        | noisy_max_v1b |           |        |       |
        | noisy_max_v2a |           |        |       |
        | noisy_max_v2b |           |        |       |
        |   histogram   |           |        |       |
        | histogram_eps |           |        |       |
        |      SVT      |           |        |       |
        |     iSVT1     |           |        |       |
        |     iSVT2     |           |        |       |
        |     iSVT3     |           |        |       |
        |     iSVT4     |           |        |       |
    """
    tasks = [(noisy_max_v1a, {}), (noisy_max_v1b, {}), (noisy_max_v2a, {}),
             (noisy_max_v2b, {}), (histogram, {}), (histogram_eps, {}),
             (SVT, {
                 'N': 1,
                 'T': 0.5
             }), (iSVT1, {
                 'T': 1,
                 'N': 1
             }), (iSVT2, {
                 'T': 1,
                 'N': 1
             }), (iSVT3, {
                 'T': 1,
                 'N': 1
             }), (iSVT4, {
                 'T': 1,
                 'N': 1
             })]

    for i, (algorithm, kwargs) in enumerate(tasks):
        start_time = time.time()
        results = {}
        for privacy_budget in (0.2, 0.7, 1.5):
            kwargs['epsilon'] = privacy_budget
            sensitivity = ONE_DIFFER if 'histogram' in algorithm.__name__ else ALL_DIFFER
            results[privacy_budget] = detect_counterexample(
                algorithm,
                tuple(x / 10.0 for x in range(1, 34, 1)),
                kwargs,
                sensitivity=sensitivity)

        plot_result(r'Test $\epsilon$', 'P Value', results,
                    algorithm.__name__.replace('_', ' ').title(),
                    algorithm.__name__ + '.pdf')

        # dump the results to file
        with open('./{}.json'.format(algorithm.__name__), 'w') as f:
            json.dump(results, f)

        logger.info('[{} / {}]: {} | Time elapsed: {}'.format(
            i + 1, len(tasks), algorithm.__name__,
            time.time() - start_time))
Exemple #2
0
def test_incorrect_algorithm(algorithm):
    func, kwargs, num_input, sensitivity = algorithm
    kwargs.update({'epsilon': 0.7})
    result = detect_counterexample(func,
                                   0.7,
                                   kwargs,
                                   num_input=num_input,
                                   loglevel=logging.DEBUG,
                                   sensitivity=sensitivity)
    assert isinstance(result, list) and len(result) == 1
    epsilon, p, *extras = result[0]
    assert p <= 0.05, 'epsilon: {}, p-value: {} is not expected. extra info: {}'.format(
        epsilon, p, extras)
Exemple #3
0
def assert_incorrect_algorithm(algorithm, kwargs=None, num_input=5):
    if kwargs and isinstance(kwargs, dict):
        kwargs.update({'epsilon': 0.7})
    else:
        kwargs = {'epsilon': 0.7}
    result = detect_counterexample(algorithm,
                                   0.7,
                                   kwargs,
                                   num_input=num_input,
                                   loglevel=logging.DEBUG)
    assert isinstance(result, list) and len(result) == 1
    epsilon, p, *extras = result[0]
    assert p <= 0.05, 'epsilon: {}, p-value: {} is not expected. extra info: {}'.format(
        epsilon, p, extras)
Exemple #4
0
def test_large_iterations():
    result = detect_counterexample(SVT,
                                   0.7, {
                                       'T': 0.5,
                                       'N': 1,
                                       'epsilon': 0.7
                                   },
                                   num_input=10,
                                   loglevel=logging.DEBUG,
                                   sensitivity=ALL_DIFFER,
                                   event_iterations=int(2e6),
                                   detect_iterations=int(5e6))
    epsilon, p, *extras = result[0]
    assert p >= 0.05, 'epsilon: {}, p-value: {} is not expected. extra info: {}'.format(
        epsilon, p, extras)