Exemple #1
0
def mlp_classifier_new(config_mlp, X, y, file):

    clf = MLPClassifier(hidden_layer_sizes=(config_mlp), max_iter=1000)

    skf = StratifiedKFold(n_splits=10)
    skf.get_n_splits(X, y)

    score = []
    f1Score = []

    for train_index, test_index in skf.split(X, y):
        #print("TRAIN:", train_index, "TEST:", test_index)
        score.append(
            clf.fit(X[train_index],
                    y[train_index]).score(X[test_index],
                                          y[test_index]))  #acuracia
        y_pred_mlp = clf.predict(X[test_index])
        f1Score.append(f1_score(y[test_index], y_pred_mlp, average='binary'))

    print('acurácia: ', fmean(score), " desvio padrão: ", (stdev(score)))
    print('f1-score ', fmean(f1Score), "desvio padrão: ", (stdev(f1Score)))

    file.write("\ncamadas: {}\tneuronios: {}\n".format(len(config_mlp),
                                                       config_mlp[0]))
    file.write("{}\t{}\n".format(fmean(score), stdev(score)))
    file.write("{}\t{}\n\n".format(fmean(f1Score), stdev(f1Score)))
Exemple #2
0
def iterate(params):
    p = params
    limits = [None, None]
    data = {}
    p['percent_diff'] = None
    p['count'] = 0
    while check_completion(p['percent_diff'], p['precision']) == False:
        p['count'] += 1
        results = calculateData(p)
        data = results[0]
        p = results[1]
        p['percent_diff'] = p['Pnf'] / p['Pnm']
        if p['percent_diff'] <= 1:
            limits[0] = p['IC_x']
            if limits[1] == None:
                p['IC_x'] *= 2
            else:
                p['IC_x'] = s.fmean(limits)
        else:
            limits[1] = p['IC_x']
            if limits[0] == None:
                p['IC_x'] /= 2
            else:
                p['IC_x'] = s.fmean(limits)
        pause(limits, data, **p)
    return data, p
def getMetadataMedia(metadatas):
    if metadatas['danceability'] is None or len(
            metadatas['danceability']) == 0:
        return metadatas

    # Fazer sistema de rankeamento, pegar o TIPO da musica
    # Desvio Padrão

    metadata = {}
    metadata['danceability'] = "{:.3f}".format(
        statistics.fmean(metadatas['danceability']))
    metadata['energy'] = "{:.3f}".format(statistics.fmean(metadatas['energy']))
    metadata['loudness'] = "{:.3f}".format(
        statistics.fmean(metadatas['loudness']))
    metadata['mode'] = statistics.mode(metadatas['mode'])
    metadata['speechiness'] = "{:.3f}".format(
        statistics.fmean(metadatas['speechiness']))
    metadata['acousticness'] = "{:.3f}".format(
        statistics.fmean(metadatas['acousticness']))
    metadata['instrumentalness'] = "{:.3f}".format(
        statistics.fmean(metadatas['instrumentalness']))
    metadata['liveness'] = "{:.3f}".format(
        statistics.fmean(metadatas['liveness']))
    metadata['valence'] = "{:.3f}".format(
        statistics.fmean(metadatas['valence']))
    metadata['tempo'] = "{:.3f}".format(statistics.fmean(metadatas['tempo']))
    metadata['duration_ms'] = "{:.3f}".format(
        statistics.fmean(metadatas['duration_ms']))
    return metadata
Exemple #4
0
    def log_evaluation(self, population: 'Population', **kwargs):

        count_penalization = 0
        partitions = list()
        fitnesses = list()
        costs = list()

        generation = population.generation

        for individual in population:
            qtd = individual.qtd_partitions
            if qtd > 1:
                count_penalization += 1
            partitions.append(qtd)
            fitnesses.append(individual.fitness)
            costs.append(individual.cost)

        currentbest = population.current_best
        bestoverall = population.documented_best

        self.log("evaluation", generation, fmean(costs), pvariance(costs),
                 fmean(fitnesses), pvariance(fitnesses), count_penalization,
                 fmean(partitions), pvariance(partitions), currentbest.cost,
                 currentbest.fitness, bestoverall.cost, bestoverall.fitness,
                 bestoverall.last_improvement)
Exemple #5
0
 def __str__(self):
     temp = fmean([fmean(i) for i in self.grades.values()
                   ]) if self.grades.values() else 0
     return (f"Имя: {self.name}\n"
             f"Фамилия: {self.surname}\n"
             f"Средняя оценка за домашние задания: {temp}\n"
             f"Курсы в процессе изучения: {self.courses_in_progress}\n"
             f"Завершенные курсы: {self.finished_courses}")
Exemple #6
0
    def __init__(self, DIR):
        self.DIR = DIR
        self.edges = purr.readXMLtag(purr.mrf(DIR, r"*.edg.xml"), "edge")
        self.nodes = purr.readXMLtag(purr.mrf(DIR, r"*.nod.xml"), "node")

        x = [float(node['x']) for node in self.nodes]
        y = [float(node['y']) for node in self.nodes]
        self.centroid = (stats.fmean(x), stats.fmean(y))
        self.xMax = max(x)
        self.xMin = min(x)
        self.yMax = max(y)
        self.yMin = min(y)
        return
Exemple #7
0
def analyze_clusters_intra_distances(evaluation, table_name):
    clusters_mean_intra_distances = []
    clusters_stdev_intra_distances = []
    for cluster in evaluation.clusters.items():
        clusters_mean_intra_distances.append(cluster[1].intra_dist_mean)
        clusters_stdev_intra_distances.append(cluster[1].intra_dist_stdev)
    evaluation.clusters_intra_dist_mean_mean = statistics.fmean(
        clusters_mean_intra_distances)
    evaluation.clusters_intra_dist_mean_stdev = statistics.stdev(
        clusters_mean_intra_distances)
    evaluation.clusters_intra_dist_stdev_mean = statistics.fmean(
        clusters_stdev_intra_distances)
    evaluation.clusters_intra_dist_stdev_stdev = statistics.stdev(
        clusters_stdev_intra_distances)
Exemple #8
0
def _iavg(*data: _num.Number) -> float:
    """
    Intuitive AVeraGe
    Returns the best average for the data set
    Use fraction.Fraction instances for ratios
    Ignores mode; nobody likes it
    
    >>> iavg(3, 4, 5)
    4
    >>> from fractions import Fraction as F
    >>> iavg(F(60, 20), F(200, 50), F(5, 1))
    Fraction(180, 47)
    """
    
    if len(data) == 1 and isinstance(data[0], (list, tuple)):
        data = data[0]
    
    target = 1.5 * iqr(*data)
    q = qdict(*data)
    for item in data:
        if item < q['q1'] - target or item > q['q3'] + target:
            return stat.median(data)
        elif isinstance(item, fraction.Fraction):
            return stat.harmonic_mean(data)
    else:
        return stat.fmean(data)
Exemple #9
0
    def measure_transitive_closure(iterations_num):
        adj = timeit.repeat(
            "Utils.get_transitive_closure_adj_matrix(intersection)",
            setup="from __main__ import Utils, intersection",
            repeat=iterations_num,
            number=1)
        sqr = timeit.repeat(
            "Utils.get_transitive_closure_squaring(intersection)",
            setup="from __main__ import Utils, intersection",
            repeat=iterations_num,
            number=1)
        average_adj = round(fmean(adj), 6)
        average_sqr = round(fmean(sqr), 6)

        result = str(average_adj) + '   ' + str(average_sqr)
        return result
Exemple #10
0
    def calculate_stats(self, data):
        dates = [ d.get('date') for d in data ]
        digital_values = [ d.get('digital_value') for d in data ]
        timestamps = [ d.get('timestamp') for d in data ]

        init_date, end_date = min(dates), max(dates)
        init_timestamp, end_timestamp = min(timestamps), max(timestamps)
        time_span = end_timestamp - init_timestamp

        mean_value = fmean(digital_values)

        n_samples = len(data)

        sensor = data[0].get('sensor')
        username = data[0].get('username')
        ip = data[0].get('ip')
        measure = data[0].get('measure')

        return {
            'digital_values': digital_values,
            'end_date': end_date,
            'end_timestamp': end_timestamp,
            'init_date': init_date,
            'init_timestamp': init_timestamp,
            'ip': ip,
            'mean_value': round(mean_value, 1),
            'measure': measure,
            'n_samples': n_samples,
            'sensor': sensor,
            'time_span': time_span,
            'username': username
        }
Exemple #11
0
    def statistics_element(self, element):
        """
        Calcularemos el promedio.

        Desde values obtendremos la informacion por elemento.
        Usaremos 3 metodos: default mean, float mean y calculo manual.
        """
        self.response = None
        self.values = self.values_page(element)

        if isinstance(self.values.get("data"), dict):
            self.values_data = self.values.get("data").get("values")

            self.values_list = [
                value for value in self.values_data.values()
            ]

            self.lenofvalues = len(self.values_list)
            self.sumofvalues = sum(self.values_list)
            self.meanofvalues = fmean(self.values_list)
            self.fmeanofvalues = mean(self.values_list)
            self.avgcomputofvalues = float(self.sumofvalues) / self.lenofvalues

            self.response["data"] = {
                "avg_stat-dmn": self.meanofvalues,
                "avg_stat-fmn": self.fmeanofvalues,
                "avg_comp-ute": self.avgcomputofvalues,
                "sum": self.sumofvalues,
                "len": self.lenofvalues
            }

        return self.response
Exemple #12
0
 def fmean(angka):
     inp = angka.split(" ")
     merge = []
     for x in inp:
         merge.append(int(x))
     inp = statistics.fmean(merge)
     print(inp)
Exemple #13
0
    def measure_print(iterations_num):
        pr = timeit.repeat("Utils.print_label_matrices(intersection)",
                           setup="from __main__ import Utils, intersection",
                           repeat=iterations_num,
                           number=1)
        average = round(fmean(pr), 6)

        result = str(average)
        return result
def calc(first, second, third, fourth):
    """Returns the average meaning from the list
    and max argument."""
    my_list = [first, second, third, fourth]
    global MAX_NUMBER
    if max(my_list) > MAX_NUMBER:
        MAX_NUMBER = max(my_list)
    average = statistics.fmean(my_list)
    return average, MAX_NUMBER
Exemple #15
0
def compute_averages(dataMatrix):
    average = []
    for classNum in range(len(dataMatrix)):
        local_average = []
        for i in (np.transpose(dataMatrix[classNum]))[:-1]:
            mean = stat.fmean(i)
            local_average.append(mean)
        average.append(local_average)
    return average
Exemple #16
0
    def seal_file(self):
        date = self.current_date

        i = 1
        total_list = self.values[self.headline[1]]
        count = len(total_list)
        count_monotonic = 0
        while i < count:
            if total_list[i] >= total_list[i - 1]:
                count_monotonic += 1
            i += 1

        result = {
            "test": {
                "name": "ddl"
            },
            "monotonicity": count_monotonic / len(total_list),
            "size": {
                "count": count,
                "collectionCount": self.collections_per_database,
                "indexesPercollection": self.indexes_per_collection,
                "numberOfShards": self.no_shards,
                "replicationFactor": self.replication_factor
            },
            "configuration": {
                "version": self.version,
                "branch": self.branch,
                "mode": self.mode,
                "edition": self.edition
            },
            "isoDate": date.isoformat(),
            "date": date.timestamp(),
            "ms": 1000 * date.timestamp()
        }

        i = 1
        while i < len(self.headline):
            name = self.headline[i]
            test_values = self.values[name]
            result['test'][name] = {
                "average": statistics.fmean(test_values),
                "median": statistics.median(test_values),
                "min": min(test_values),
                "max": max(test_values),
                "deviation": {
                    "pst": statistics.pstdev(test_values),
                    "pvariance": statistics.pvariance(test_values),
                    "stdev": statistics.stdev(test_values),
                    "variance": statistics.variance(test_values)
                },
                "values": test_values,
                "numberRuns": count
            }
            i += 1

        print(json.dumps(result))
Exemple #17
0
def stats(utt_len):
    moy = stat.fmean(utt_len)
    median = stat.median(utt_len)
    var = stat.variance(utt_len)
    quart1 = np.percentile(utt_len, 25)
    quart3 = np.percentile(utt_len, 75)

    printStats(moy, median, var, quart1, quart3)

    return moy, median, var, quart1, quart3
Exemple #18
0
    def measure_intersection(iterations_num):
        intersection = timeit.repeat(
            "Utils.get_intersection(graph, automaton)",
            setup="from __main__ import Utils, graph, automaton",
            repeat=iterations_num,
            number=1)
        average = round(fmean(intersection), 6)

        result = str(average)
        return result
Exemple #19
0
def main():
    try:
        data = json.loads(request.data)
        validator.validate(data)
    except ValidationError:
        return jsonify(error=True, msg="JSON data invalid")
    except:
        return jsonify(error=True, msg="Invalid POST data")

    query_types = list(data['query_type'].split('|'))
    returns = {}

    filtered_data = df
    for _filter in data.get('filters', []):
        if _filter['operand1'] == 'discount':
            if not isinstance(_filter['operand2'], Number):
                return jsonify(error=True,
                               msg="Discount percentage is not a number")

            operator = _filter['operator']
            percent = _filter['operand2']

            filtered_data = filtered_data[filtered_data.price.apply(
                filter_by_discount(operator, percent))]

        elif _filter['operand1'] == 'brand.name':
            operator = _filter['operator']
            if operator != '==':
                return jsonify(
                    error=True,
                    msg="To filter by brand name, use operator '=='")

            brand_name = _filter['operand2']
            filtered_data = filtered_data[filtered_data.brand.apply(
                filter_by_brand(brand_name))]

    if "discounted_products_list" in query_types:
        returns.update({
            'discounted_products_list': [x['$oid'] for x in filtered_data._id]
        })

    if "avg_discount" in query_types:
        discounts = filtered_data.price.apply(discount_percentage)
        avg_discount = fmean(discounts) if len(discounts) > 0 else 0.0
        returns.update({'avg_discount': avg_discount})

    if "expensive_list" in query_types:
        expensive_list = filtered_data[filtered_data.apply(
            filter_by_expensive_product, axis=1)]

        returns.update(
            {'expensive_list': [x['$oid'] for x in expensive_list._id]})

    return jsonify(returns)
Exemple #20
0
    def get_average(
            self,
            value,
            params=None):  # returns the average value of a data header set
        params = params or dict()
        if value == 'smoker':
            raise Exception("Boolean value is not valid entry")
        elif value == 'sex' or value == 'region':
            raise Exception("String value is not valid entry")

        return round(statistics.fmean(self.get_data(value, params)), 2)
Exemple #21
0
 def get_celery_success(core_id, time_elap, fps_batch, wins, seeker_plot, hiding_plot  ):
     return {
         'core_id': core_id,
         'time_elapsed': time_elap,
         'fps_peak': round(max(fps_batch)),
         'fps_lower': round(min(fps_batch)),
         'fps_mean': round(statistics.fmean(fps_batch)),
         'fps_median': round(statistics.median(fps_batch)),
         'fps_quantiles': [round(quantile) for quantile in statistics.quantiles(fps_batch)],
         'wins': wins,
         'seeker_plot': seeker_plot,
         'hiding_plot': hiding_plot,
     }
Exemple #22
0
def measure_intra_distances(clusters, table_name):
    for cluster_id in clusters:
        cluster = clusters[cluster_id]
        result = DB.exec(f"select Distance from {table_name} "
                         f"where Cluster = {cluster_id}")
        count = 0
        intra_distances = []
        for row in result:
            count += 1
            intra_distances.append(row["Distance"])
        cluster.intra_dist_mean = statistics.fmean(intra_distances)
        cluster.intra_dist_stdev = statistics.stdev(
            intra_distances) if count >= 2 else 0.0
Exemple #23
0
def run_benchmarks(query, repeat=5):
    results = defaultdict(list)
    with get_new_connection() as connection:
        for query in queries:
            for _ in range(repeat):
                start = time.perf_counter()
                run_query_on_connection(connection, query)
                results[query].append(time.perf_counter() - start)

    return {
        key: round(statistics.fmean(val), PRECISION)
        for key, val in results.items()
    }
Exemple #24
0
    def add_trade(self, time, price: float, volume: float, sell=False):

        time = time_as_nano(time)

        if time > self.end_time:
            return False

        trade_cost = price * volume
        self.trade_cnt += 1
        self.prices.append(price)
        self.amounts.append(volume)
        self.amounts.sort()
        self.totals.append(trade_cost)
        self.totals.sort()

        if self.open == 0 or time < self.last_time:
            self.open = price
        if self.close == 0 or time > self.last_time:
            self.close = price
        if self.high == 0 or price > self.high:
            self.high = price
        if self.low == 0 or price < self.low:
            self.low = price

        self.volume += volume
        if sell:
            self.sell_totals.append(trade_cost)
            self.sell_avg = statistics.fmean(self.sell_totals)
        else:
            self.buy_totals.append(trade_cost)
            self.buy_avg = statistics.fmean(self.buy_totals)

        # calc totals
        self.trade_med = statistics.median(self.totals)
        self.trade_avg = statistics.fmean(self.totals)
        self.price_avg = statistics.fmean(self.prices)
        self.last_time = time
Exemple #25
0
    def summary(self):
      summary = {}
      for section, durations in self.sections_duration.items():
        p80, p95 = self.percentiles(durations)
        summary[section] = {
            'count': len(durations),
            'min': round(min(durations) * 1000),
            'max': round(max(durations) * 1000),
            'avg': round(statistics.fmean(durations) * 1000),
            'median': round(statistics.median(durations) * 1000),
            'p80': round(p80 * 1000),
            'p95': round(p95 * 1000),
        }

      return summary
Exemple #26
0
    def summary(self):
        summary = {}
        for section, durations in self.sections_duration.items():
            p80, p95 = self.percentiles(durations)
            summary[section] = {
                "count": len(durations),
                "min": round(min(durations) * 1000),
                "max": round(max(durations) * 1000),
                "avg": round(statistics.fmean(durations) * 1000),
                "median": round(statistics.median(durations) * 1000),
                "p80": round(p80 * 1000),
                "p95": round(p95 * 1000),
            }

        return summary
Exemple #27
0
def nayve_bayes_new(X, y, file):

    clf = MultinomialNB()

    skf = StratifiedKFold(n_splits=10)
    skf.get_n_splits(X, y)

    score = []
    f1Score = []

    for train_index, test_index in skf.split(X, y):
        #print("TRAIN:", train_index, "TEST:", test_index)
        score.append(
            clf.fit(X[train_index],
                    y[train_index]).score(X[test_index],
                                          y[test_index]))  #acuracia
        y_pred_mlp = clf.predict(X[test_index])
        f1Score.append(f1_score(y[test_index], y_pred_mlp, average='binary'))

    print('acurácia: ', fmean(score), " desvio padrão: ", stdev(score))
    print('f1-score ', fmean(f1Score), "desvio padrão: ", stdev(f1Score))

    file.write("{}\t{}\n".format(fmean(score), stdev(score)))
    file.write("{}\t{}\n\n".format(fmean(f1Score), stdev(f1Score)))
Exemple #28
0
def process_screen_rolling_backtest_result(json: dict, start_dt, end_dt,
                                           precision):
    if precision is None:
        precision = 2
    length = len(json['rows'])
    data = [start_dt, end_dt, length]
    data.extend(val for val in json['average'][4:8])
    data.append(min(float(item[8]) for item in json['rows']))
    data.append(max(float(item[9]) for item in json['rows']))
    data.append(json['average'][10])
    data.append(
        round(statistics.fmean(float(item[5]) for item in json['rows'][0:13]
                               ), precision) if length >= 13 else None)
    data.append(
        round(statistics.fmean(float(item[5]) for item in json['rows'][0:65]
                               ), precision) if length >= 65 else None)
    data.append(
        round((statistics.geometric_mean(
            float(item[5]) / 100 + 1 for item in json['rows']) - 1) * 100,
              precision))
    data.append(
        round((statistics.geometric_mean(
            float(item[6]) / 100 + 1 for item in json['rows']) - 1) * 100,
              precision))
    data.append(
        round((statistics.geometric_mean(
            float(item[5]) / 100 + 1 for item in json['rows'][0:13]) - 1) *
              100, precision) if length >= 13 else None)
    data.append(
        round((statistics.geometric_mean(
            float(item[5]) / 100 + 1 for item in json['rows'][0:65]) - 1) *
              100, precision) if length >= 65 else None)
    data.append(
        round(statistics.fmean(float(item[4]) for item in json['rows'][0:65]
                               ), precision) if length >= 65 else None)
    return data
def main():
    array = list(np.random.randint(low=1, high=50, size=10))
    big_array = list(np.random.randint(low=1, high=100000, size=5000))
    rprint("[green]Unsorted array:", array)
    bubblesort(array)
    rprint("[green]Sorted array:", array)
    times = np.array([])
    for i in range(10):
        start_time = time.time()
        bubblesort(big_array)
        stop_time = time.time()
        times = np.append(times, [stop_time - start_time])
    rprint(
        "[yellow]Average Time taken over 10 sorting operations to sort an \
array of size 5000:", fmean(times), "[yellow]seconds.")
def main():
    random.seed(42)
    array = [random.randint(a=1, b=50) for _ in range(10)]
    big_array = [random.randint(a=1, b=100000) for _ in range(5000)]
    rprint("[green]Unsorted array:", array)
    radixsort(array)
    rprint("[green]Sorted array:", array)
    times = []
    for i in range(10):
        start_time = time.time()
        radixsort(big_array)
        stop_time = time.time()
        times.append(stop_time - start_time)
    rprint(
        "[yellow]Average Time taken over 10 sorting operations to \
    sort an array of size 5000:", fmean(times), "[yellow]seconds.")