Exemple #1
0
def getRate(aUrl):
    irUrl = mainUrl + aUrl
    i = 1
    yes = 0
    no = 0
    yesarr = []
    try:
        while True: #traveling pages
            pageSoup = BeautifulSoup(urlopen(irUrl+"&page="+str(i)), 'html.parser', from_encoding='cp932')
            pageTables = pageSoup.body.div.div.find_all('table')
            pageTable = pageTables[len(pageTables)-1].find_all('tr')
            # kinda dangerous part. check whether it's players' data table or not
            if len(pageTable[0].find_all('th'))!=17:
                break
            for j in range(1, len(pageTable),2):
                dataRow = pageTable[j]
                commentRow = pageTable[j+1]
                #check black list
                playerID = re.search('[0-9]+',dataRow.a['href']).group(0)
                if playerID in blackList:
                    continue
                #replace fullwidth(Em-size) characters with halfwidth characters
                comment = unicodedata.normalize("NFKC", commentRow.td.string or "")
                checkVal = checkComment(comment)
                if checkVal[1]==-1:
                    no = no+1
                elif checkVal[1]>0:
                    yes = yes+1
                    yesarr.append(checkVal)
            i = i+1

        med = -1
        if len(yesarr):
            yesarr = sorted(yesarr)
            temparr = []
            resarr = []
            for i in range(0, len(yesarr)):
                if i>0 and yesarr[i][0] > yesarr[i-1][0]:
                    med = statistics.median_high(temparr)
                    if len(resarr)==0 or med != resarr[-1][1]:
                        resarr.append( (yesarr[i-1][0], med))
                temparr.append(yesarr[i][1])
            med = statistics.median_high(temparr)
            if len(resarr)==0 or med != resarr[-1][1]:
                resarr.append( (yesarr[-1][0], med)) 
        return (yes, no, med, resarr)
    except:
        print("Failed to load the IR page: " + aUrl)
Exemple #2
0
def get_overall_stats(results_dict):
    average = statistics.mean(results_dict)
    median = statistics.median(results_dict)
    median_low = statistics.median_low(results_dict)
    median_high = statistics.median_high(results_dict)
    mode = calc_mode(results_dict)
    return {'avg': average, 'med': median, 'medlo': median_low, 'medhi': median_high, 'mode': mode}
Exemple #3
0
def stats_helper(list):
    """
    https://docs.python.org/3/library/statistics.html#statistics.pvariance
    :param list:
    :return:
    """

    mean = statistics.mean(list)
    mode = None

    try:
        mode = statistics.mode(list)
    except statistics.StatisticsError:
        # no unique mode
        pass

    return {
        'mean': mean,
        'variance': statistics.pvariance(list, mu=mean),
        'standard_deviation': statistics.pstdev(list, mu=mean),
        'median': statistics.median(list),
        'median_low': statistics.median_low(list),
        'median_high': statistics.median_high(list),
        'median_grouped': statistics.median_grouped(list),
        'mode': mode
    }
Exemple #4
0
 def __init__(self, values):
     values = [eval(i) for i in values]
     super().__init__(values)
     self.min = min(values)
     self.max = max(values)
     self.mean = Decimal(mean(values)).quantize(Decimal('.00000'))
     self.median_low = median_low(values)
     self.median = median(values)
     self.median_high = median_high(values)
def web_dataset_reader(url):
    '''
    :param url: Input a web address.
    :return: This algorithm returns a dataseet and its descriptive statistics.
    Example:
    >>> url='http://robjhyndman.com/tsdldata/ecology1/hopedale.dat'
    >>> import web_dataset_reader_program as wbd
    >>> print(wbd.web_dataset_reader(url))
    >>> .
        .
        .
    '''
    from urllib import request as ur
    import web_skip_header_program as wh
    import statistics as st
    highvalue=0
    count=0
    with ur.urlopen(url) as webpage:
        first_data=wh.webpage_skip_head(webpage)
        first_data=first_data.split()
        dataset=first_data
        for data in webpage: # This reads the remaining lines of the webpage
            data=data.decode('utf-8')
            data=data.split()
            dataset+=data # For each iteration, the data transformed into
            # list append to dataset with first_data as its first list
            # #print(dataset)
            data_float=dataset
        for i in range(len(dataset)):
            data=float(dataset[i])
            data_float[i]=float(dataset[i]) # Elements in the list 'dataset' are transformed to
            #  float for additional operations such as min, max, range, sum
            count+= 1 # This counts the number of elements in the list
            highvalue =max(highvalue,data) # Zero is assigned to highvalue for its start value.
            #  The data changes for each loop and compared with each element in the list
        lowvalue = min(data_float)
        totalvalue =sum(data_float)
        rangevalue = highvalue - lowvalue
        #print(count)
        observation=len(dataset)
        average=totalvalue/observation
        mean=st.mean(data_float)
        median=st.median(data_float)
        median_high=st.median_high(data_float)
        median_low=st.median_low(data_float)
        #mode=st.mode(data_float)# If there is more than one mode, it will return Stat Error
        stdev=st.pstdev(data_float)
        variance=st.pvariance(data_float)
    return print('The Dataset in List form is:\n',data_float,'\n',
              '=============================================\n','            DIAGNOSTIC ANALYTICS             \n',
                 '=============================================\n','The Descriptive Statistics of the Dataset are:',
                 '\nTotal:\t\t{3}\nMaximum:\t{0}\nMinimum:\t{1}\nRange:\t\t{2}\nAverage:\t{5:.2f}\nMedian:\t\t{6}'
              '\nMedianHigh:\t{7}\nMedian Low:\t{8}\nVariance:\t{10:.2f}\nStd.Dev:\t{9:.2f}\nCounts:\t\t{4}'
              .format(highvalue,lowvalue,rangevalue,totalvalue,observation,mean,median,median_high,
                      median_low,stdev,variance),'\n','=============================================')
Exemple #6
0
def connected_components(matrix, author_to_int):
	#convert matrix to adj_list
	v = len(matrix)
	adj_list = convert_matrix_to_adj_list(matrix, v)
	#using dfs to find connected components
	metavisited, list_of_ints = [False for _ in range(v)], []
	for vertex in range(v):
		if not metavisited[vertex]:
			ret = dfs(metavisited, vertex, adj_list)
			list_of_ints.append(ret[0])
			metavisited = ret[1]
	largest = largest_connected(list_of_ints)
	max_cc_size, max_cc, sizes = largest[0], largest[1], sorted(largest[2])

	#convert ints into authors
	inverse_author_dict = {v: k for k, v in author_to_int.items()}
	list_of_strings, max_cc_string = [], []
	for cc in list_of_ints:
		string_cc = [inverse_author_dict[i] for i in cc]
		if cc == max_cc:
			max_cc_string = string_cc
		list_of_strings.append(string_cc)

	#statistics of cc sizes
	average = statistics.mean(sizes)
	median = statistics.median(sizes)
	median_low = statistics.median_low(sizes)
	median_high = statistics.median_high(sizes)
	mode = calc_mode(sizes)
	#density per connected component
	d_per_component = density_per_component(list_of_ints, matrix, author_to_int)
	#saving info into a text file
	with open('connected_components.txt', 'w') as f:
		f.write('Connected authors: ' + '\n')
		for cc in list_of_strings:
			f.write('\n' + str(len(cc)) + '   ' + str(cc) + '\n')
			f.write('Density : ' + str(d_per_component[str(cc)]) + '\n')
		f.write('\n')
		f.write('Connected components: ' + '\n')
		for cc in list_of_ints:
			f.write(str(len(cc)) + '   ' + str(cc) + '\n')
		f.write('\n')
		f.write('Number of connected components: ' + str(len(list_of_ints)) + '\n')
		f.write('Largest component size: ' + str(max_cc_size) + '\n')
		f.write('Largest connected component: ' + str(max_cc_string) + '\n')
		f.write('Component sizes: ' + str(sizes) + '\n')
		f.write('Average component size: ' + str(average) + '\n')
		f.write('Median: ' + str(median) + '\n')
		f.write('Low median: ' + str(median_low) + '\n')
		f.write('High median: ' + str(median_high) + '\n')
		f.write('Mode: ' + str(mode))
	pickle.dump(adj_list, open("adj_list.p", "wb"))
	pickle.dump(list_of_ints, open("list_of_ints.p", "wb"))
def main():
    print(stats.mean(range(6)))
    print(stats.median(range(6)))
    print(stats.median_low(range(6)))
    print(stats.median_high(range(6)))
    print(stats.median_grouped(range(6)))
    try:
        print(stats.mode(range(6)))
    except Exception as e:
        print(e)
    print(stats.mode(list(range(6)) + [3]))
    print(stats.pstdev(list(range(6)) + [3]))
    print(stats.stdev(list(range(6)) + [3]))
    print(stats.pvariance(list(range(6)) + [3]))
    print(stats.variance(list(range(6)) + [3]))
 def __init__(self, values, stdDevs): 
     new_values = []
     for i in values:
         if i != '':
             try:
                 if "." in i:
                     new_values.append(float(i))
                 else:
                     new_values.append(int(i))
             except:
                 pass #already picked up by error checks
     values = new_values
     super().__init__(values)
     self.stDevOutliers = []
     standardDeviations = Decimal(stdDevs)
     if len(values) >= 8:
         self.pval = mstats.normaltest(array(values))[1]
     else:
         self.pval = 100
     self.min = min(values)
     self.max = max(values)
     self.mean = Decimal(mean(values)).quantize(Decimal('.00000'))
     self.median_low = median_low(values)
     self.median = median(values)
     self.median_high = median_high(values)
     self.stdev = Decimal(stdev(values)).quantize(Decimal('.00'))
     self.normDist = 'No'
     if(self.pval > 0.055):
         self.normDist = 'Yes'
     elif self.pval == 100:
         self.normDist = 'N/A'
     if self.normDist == 'Yes':
         outlier_count = 0
         for x, value in enumerate(values):
             if value < (self.mean - standardDeviations * self.stdev) or \
             value > (self.mean + standardDeviations * self.stdev):  
                 if outlier_count > max_Outliers:
                     self.stDevOutliers = ">%d outliers" % max_Outliers
                     break
                 self.stDevOutliers.append("Row: %d Value: %s" % (x, value))
                 outlier_count += 1
 def __init__(self, values, stdDevs):
     standardDeviations = stdDevs 
     new_values = []
     for i in values:
         if i != '':
             try:
                 new_values.append(float(i))
             except:
                 pass #already picked up in error checks
     values = new_values
     super().__init__(values)
     self.stDevOutliers = []
     if len(values) >= 8:
         self.pval = mstats.normaltest(array(values))[1]
     else:
         self.pval = 100
     if self.mode != 'N/A':
         self.mode = self.int_to_sci(self.mode)
     self.min = self.int_to_sci(min(values))
     self.max = self.int_to_sci(max(values))
     self.mean = self.int_to_sci(mean(values))
     self.median_low = self.int_to_sci(median_low(values))
     self.median = self.int_to_sci(median(values))
     self.median_high =  self.int_to_sci(median_high(values))
     self.stdev = self.int_to_sci(stdev(values))
     self.normDist = 'No'
     if(self.pval < 0.055):
         self.normDist = 'Yes'
     elif(self.pval == 100):
         self.normDist = 'N/A'
     if self.normDist == 'Yes':
         outlier_count = 0
         for x, value in enumerate(values):
             if value < (float(self.mean) - standardDeviations * float(self.stdev)) or \
             value > (float(self.mean) + standardDeviations * float(self.stdev)):               
                 if outlier_count > max_Outliers:
                     self.stDevOutliers = ">%d outliers" % max_Outliers
                     break
                 self.stDevOutliers.append("Row: %d Value: %s" % (x, value))
                 outlier_count += 1
m2 = {}
l1 = []
l2 = []
while n <= end:
    c += 1

    h = intHash32(n)
    #Extract left most 12 bits
    x1 = (h >> 20) & 0xfff
    m1[x1] = 1
    z1 = m - len(m1)
    #Linear counting formula
    u1 = int(m * math.log(float(m) / float(z1)))
    e1 = abs(100*float(u1 - c)/float(c))
    l1.append(e1)
    print("%d %d %d %f" % (n, c, u1, e1))

    #Extract right most 12 bits
    x2 = h & 0xfff
    m2[x2] = 1
    z2 = m - len(m2)
    u2 = int(m * math.log(float(m) / float(z2)))
    e2 = abs(100*float(u2 - c)/float(c))
    l2.append(e2)
    print("%d %d %d %f" % (n, c, u2, e2))

    n += 1

print("Left 12 bits error: min=%f max=%f avg=%f median=%f median_low=%f median_high=%f" % (min(l1), max(l1), stat.mean(l1), stat.median(l1), stat.median_low(l1), stat.median_high(l1)))
print("Right 12 bits error: min=%f max=%f avg=%f median=%f median_low=%f median_high=%f" % (min(l2), max(l2), stat.mean(l2), stat.median(l2), stat.median_low(l2), stat.median_high(l2)))
Exemple #11
0
    while(j > left and A[j - 1] > A[j]):
      swap(A,j,j - 1)
      j -= 1
  return left + int(math.ceil((right - left) / 2))

def swap(A,i,j):
  A[i],A[j] = A[j],A[i]

def partition(A,lo,hi,pivot):
  pivotVal = A[pivot]
  swap(A,hi,pivot)
  i = lo 
  for j in range(lo,hi):
    if( A[j] <= pivotVal ):
      swap(A,i,j)
      i += 1
  swap(A,hi,i)
  return i

N = 1000
for i in range(1,N+1):
  A = [random.randint(0,100) for j in range(0,i)]
  myMed = median(A)
  theirMed = median_high(A) 
  if(myMed != theirMed):
    print("ERROR! our median algorithm found %d while theirs found %d. Dump of A:\n%s" % (myMed, theirMed, str(A)))
  else:
    continue
print("done! ran through %d test cases." % N)

print(num)

a = [1, 2, 3, 4]
num = statistics.median(a)
print(num)

a = [1, 2, 3, 4, 5]
num = statistics.median(a)
print(num)

a = [1, 2, 3, 4]
num = statistics.median_low(a)
print(num)

a = [1, 2, 3, 4, 5]
num = statistics.median_high(a)
print(num)

a = [1, 2, 3, 4]
num = statistics.median_grouped(a)
print(num)

a = [1, 2, 3, 4, 5, 4]
num = statistics.mode(a)
print(num)

a = [1, 2, 3, 4, 5, 1]
num = statistics.mode(a)
print(num)

a = [1, 2, 3, 4]
def calcular_dados():
	"""
	Calcula as estatisticas de idade:

	1. Mostrar a menor idade calculada
	2. Mostrar a maior idade calculada
	3. Mostrar a média de idade dos adultos
	4. Mostrar a quantidade de nascimentos por década

	O que temos: [ 1970, 1981, 1998, 2002, 1990, 1970 ]
	O que queremos: { 1980: 10, 1990: 15, 2000: 5 }

	1o passo: converter anos em decadas:
	1985 / 10 = 198,5 int -> 198 x10 = 1980
	2o passo: criar uma lista nova (set_decadas) com as decadas sem repetir
	3o passo: contar as decadas na lista original (lista_decadas) usando a lista nova
	Para cada decada dentro da lista nova (set_decadas) contar qtas vezes
	ela aparece na lista original (lista_decadas)
	"""

	# Lista por Compreensão
	# lista = [ <expressão para valor> <loop> <expressão para loop> ]
	menor_idade = min([ objeto.idade for objeto in lista_entrevistados ])
	maior_idade = max([ objeto.idade for objeto in lista_entrevistados ])

	media_adultos = statistics.median_high(
			[ objeto.idade for objeto in lista_entrevistados if objeto.idade >= 18 ]
		)

	lista_decadas = [ int(objeto.ano_informado/10)*10 for objeto in lista_entrevistados]

	set_decadas = set(lista_decadas)

	# Dicionário por Compreensão
	# dicionario = { <expressao para chave>:<expressao para valor> <loop> <expressao pro loop>}
	qtd_nascimentos = { decada:lista_decadas.count(decada) for decada in set_decadas }

	print("\nResultados:")
	print('-----------------------------------------')
	print("Quantidade de Entrevistas: {}".format(len(lista_entrevistados)))
	print("Menor Idade Informada: {}".format(menor_idade))
	print("Maior Idade Informada: {}".format(maior_idade))
	print("Média de Idade dos Adultos Informados: {}".format(media_adultos))
	print("\nNascimentos por Década")
	print('-----------------------------------------')
	for decada, quantidade in qtd_nascimentos.items():
		print("{}: {} nascimentos".format(decada, quantidade))
	print('\n\n')

	resposta_ok = False

	while resposta_ok == False:
		try:
			resposta = input("Deseja mostrar os dados num arquivo? (s/n)")
			resposta = resposta[0].lower()
			if resposta == 's' or resposta == 'n':
				resposta_ok = True
		except:
			continue

	if resposta == 's':
		sh.gedit("dados.json")
Exemple #14
0
def doCalc(G, counter, results):
    print("start calculations")
    fh = open("hamster.edgelist", 'rb')
    Ginit = nx.read_edgelist(fh, create_using=nx.DiGraph())
    fh.close()
    pr = nx.pagerank(G, alpha=0.85)
    prtwo = nx.pagerank(Ginit, alpha=0.85)
    avg = float(1) / float(number_of_nodes(G))
    isavg = 0
    underavg = 0
    aboveavg = 0
    minv = 1
    maxv = 0
    work = 0
    for key, value in pr.items():
        #print(key, 'corresponds to', value)
        g = str(value)
        a = str(key) + ": " + g
        #print(a)
        work = work + value
        if (value < avg):
            underavg = underavg + 1
            if (minv > value):
                minv = value
        elif (value == avg):
            isavg = isavg + 1
        else:
            aboveavg = aboveavg + 1
            if (maxv < value):
                maxv = value

    onemin = 0
    onemax = 0
    items = []
    for k, l in pr.items():
        items.append(l)
        if (l == minv):
            onemin = onemin + 1
        elif (l == maxv):
            onemax = onemax + 1

    m = str(onemin)
    n = str(onemax)
    b = str(work)
    c = str(isavg)
    d = str(underavg)
    e = str(aboveavg)
    h = str(minv)
    i = str(maxv)
    f = str(avg)
    o = str(statistics.median(items))
    p = str(statistics.median_low(items))
    q = str(statistics.median_high(items))
    s = str(statistics.median_grouped(items))
    #t = str(statistics.mode(items))
    u = str(statistics.pstdev(items))
    v = str(statistics.pvariance(items))
    w = str(statistics.stdev(items))
    x = str(statistics.variance(items))
    #y= str(statistics.StatisticsError(items))

    if (os.stat(os.getcwd() + "/results/testResults" + str(counter) +
                ".txt").st_size >= 5000000):
        results.close()
        counter = counter + 1
        results = open(
            os.getcwd() + "/results/testResults" + str(counter) + ".txt", 'w')
        print(counter)
    results.write('\n')
    results.write('testdata \n')
    results.write(json.dumps(pr) + '\n')
    print("start new pagerank")
    one = pagerankCalc(G, pr, False)
    print("start init pagerank")
    two = pagerankCalc(Ginit, prtwo, False)

    results.write("average: " + f + '\n')
    results.write("total: " + b + '\n')
    results.write("isavg: " + c + '\n')
    results.write("underavg: " + d + '\n')
    results.write("aboveavg: " + e + '\n')
    results.write("minimum: " + h + '\n')
    results.write("maximum: " + i + '\n')
    results.write("nrminimum: " + m + '\n')
    results.write("nrmaximum: " + n + '\n')
    results.write("median: " + o + '\n')
    results.write("low median: " + p + '\n')
    results.write("high median: " + q + '\n')
    results.write("grouped median: " + s + '\n')
    #results.write("mode: "+t+'\n')
    results.write("pstdev: " + u + '\n')
    results.write("pvariance: " + v + '\n')
    results.write("stdev: " + w + '\n')
    results.write("variance: " + x + '\n')
    print("start pagerank calc")
    results.write("rank list: " + json.dumps(one) + '\n')
    results.write("rank list init: " + json.dumps(two) + '\n')
    #results.write("error: "+y+'\n') # too much data, only if actually test
    print("start eroor calc")

    results.write("rank list error : " + json.dumps(one) + '\n')
    results.write("rank list init error: " + json.dumps(two) + '\n')
    print("start error calc")
    error = calcrankError(two, one)

    pr = nx.pagerank(G, alpha=0.85)
    prtwo = nx.pagerank(Ginit, alpha=0.85)

    errorvalue = calcvalueError(two, one, prtwo, pr)
    results.write("rank based error: " + str(error) + '\n')
    results.write("value based error: " + str(errorvalue) + '\n')
    print("succes writing to test " + str(counter) + " result")
    return counter, results
Exemple #15
0
atexit.register(lambda: p.terminate())
time.sleep(1)   # Wait for the server to launch.
"""


def test_runserver():
    import requests
    requests.get('http://localhost:8000/')


if __name__ == '__main__':
    for cmd in ['runserver', 'gunserver']:
        t = timeit.Timer('test_runserver()', setup_code.format(cmd=cmd))
        loop, repeat = 1000, 3
        results = t.repeat(repeat, loop)

        print()
        print(cmd, 'loop of', loop, 'repeated', repeat, 'times')
        print('=============')
        print('Average: {mean:.2f}'.format(mean=statistics.mean(results)))
        print('Medians: {me:.2f} {lo:.2f} {hi:.2f}'.format(
            me=statistics.median(results),
            lo=statistics.median_low(results),
            hi=statistics.median_high(results),
        ))
        print('Min/Max: {min:.2f} {max:.2f}'.format(
            min=min(results),
            max=max(results),
        ))
    print()
Exemple #16
0
for slice2 in range(0,200):
    ymean = input[slice2]
    popt, pcov = curve_fit(func, x, ymean,[1000, 3, 1])
    k = func(0,*popt)
    if k > 800:
        densmean2[i2] = k
        i2 = i2 + 1

        
print 'length of densmap2', len(densmean2)
plt.plot(zcoord,densmean,'k.')
import statistics
print mean(densmean2)
print median(densmean2)
print statistics.median_low(densmean2)
print statistics.median_high(densmean2)
#print statistics.mode(densmean2)

# <codecell>

## DELETE THIS CELL, IT GIVES ONLY HOW MANY TIMES DOES EACH VALUE OF densmean APPEAR -> NOT USEFUL
from collections import Counter
c = Counter(densmean)  
#print densmean
#list(c)
c += Counter()   
#print c.most_common()       # n least common elements 
#print c[-3.2638837653955745e-17]
#sum(c.values())  

# <codecell>
 def findMedian(self):
     return (statistics.median_high(self.x_list),
             statistics.median_high(self.y_list))
Exemple #18
0
import statistics
lista1 = [3,5,3,12,13,3,7,8]
lista2 = [3,3,3,5,7,8,12,13]
print(statistics.median(lista1))
print(lista1)
print(statistics.median_low(lista1))
print(statistics.median(lista2))
print(lista2)
print(statistics.median_low(lista2))
print(statistics.median_high(lista1))
print(lista2[(statistics.median_high(lista2))])

l2 = ["bla", "aga"]
l2[0] = 0
print(l2)
import pandas as pd
import matplotlib.pyplot as plt

dane = np.loadtxt("MDR_RR_TB_burden_estimates_2020-10-29.csv", delimiter=',', skiprows=1, usecols=12)
# print(dane)

print(np.max(dane))
print(dane.max())
print(np.median(dane))

dane1 = np.loadtxt("Wzrost.csv", delimiter=',', skiprows=0)
# print(dane1)

print("odchylenie standardowe:", st.stdev(dane1))
print("odchylenie standardowe 2", st.pstdev(dane1))
print("median high:", st.median_high(dane1))
print("median low:", st.median_low(dane1))
print("pstdev:", st.pstdev(dane1))
print("stdev:", st.stdev(dane1))
print("pvariance:", st.pvariance(dane1))
print("variance:", st.variance(dane1))
print("mode:", st.mode(dane1))

print(sc.ttest_1samp(dane, 0))

df = pd.read_csv("brain_size.csv", delimiter=";", skiprows=0)
# print(df)

print(np.mean(df['VIQ']))
print(df['Gender'].value_counts())
Exemple #20
0
# using Python statistics functions
import statistics
import csv
import array

# simple statistics operations
sample_data1 = [1, 3, 5, 7]
sample_data2 = [2, 3, 5, 4, 3, 5, 3, 2, 5, 6, 4, 3]

# TODO: Use the mean function - calculates an average value
print(statistics.mean(sample_data1))

# TODO: Use the different median functions
print(statistics.median(sample_data1))
print(statistics.median_high(sample_data1))
print(statistics.median_low(sample_data1))
print(statistics.median_grouped(sample_data1))

# TODO: The mode function indicates which data item occurs
# most frequently
print(statistics.mode(sample_data2))


# Read data from a CSV file and calculate statistics
def readData():
    with open("StockQuotes.csv") as dataFile:
        data = array.array('f', [])

        reader = csv.reader(dataFile)
        curLine = 0
        for row in reader:
Exemple #21
0
#Медиана
n = len(x)
if n % 2:
    median_ = sorted(x)[round(0.5 * (n - 1))]
else:
    x_ord, index = sorted(x), round(0.5 * n)
    median_ = 0.5 * (x_ord[index - 1] + x_ord[index])
print(f'Расчет медианы: {median_}')
median_2 = statistics.median(x)
print(f'Расчет медианы с помощью statistics.median(): {median_2}')
statistics.median_low(x[:-1])
print(
    f'Расчет медианы с помощью statistics.median_low: {statistics.median_low(x[:-1])}'
)
statistics.median_high(x[:-1])
print(
    f'Расчет медианы с помощью statistics.median_high {statistics.median_high(x[:-1])}'
)
median_2 = np.median(y)
print(f'Расчет медианы с помощью np.median: {median_2}')

#Мода
u = [2, 3, 2, 8, 12]
mode_ = max((u.count(item), item) for item in set(u))[1]
print(f'Вычисление моды: {mode_}')
mode_2 = statistics.mode(u)
print(f'Вычисление моды с помощью statistics.mode(): {mode_2}')
mode_3 = statistics.multimode(u)
print(f'Вычисление моды с помощью statistics.multimode(): {mode_3}')
mode_4 = scipy.stats.mode(u)
Exemple #22
0
'''
Created on 2016. 12. 8.

@author: lsh
'''

import statistics as sta

data = [1, 2, 3, 4, 5, 6]

print(sta.mean(data))
print(sta.median(data))
print(sta.median_low(data))
print(sta.median_high(data))

print(sta.pvariance(data))
print(sta.pstdev(data))

print(sta.variance(data))
print(sta.stdev(data))
Exemple #23
0
 def update_event(self, inp=-1):
     self.set_output_val(0, statistics.median_high(self.input(0)))
Exemple #24
0
import statistics
n = int(input())
a = list(map(int, input().split()))
p = int(int(n * (n + 1) / 2) / 2 + 1)
ans = a
flg = False
for i in range(2, n):
    for j in range(n - i):
        t = statistics.median_high(a[j:i + j])
        ans.append(t)
        if (ans.count(t) >= p):
            flg = True
            break
    if (flg):
        break
print(statistics.median_high(ans))
import statistics as s

olst = [1, 2, 3, 5, 6, 9, 4, 2, 10]
elst = [0, 1, 4, 5, 6, 6, 8, 6]
print(s.mean(olst))
print(s.mean(elst))
print(s.median(olst))
print(s.median(elst))
print(s.median_low(olst))
print(s.median_high(elst))
print(s.mode(olst), s.mode(elst), sep=' And ')
print(s.stdev(olst), s.stdev(elst))
print(s.variance(olst), s.variance(elst), sep=' And ')
print(s.pvariance(olst), s.pvariance(elst), sep=' And ')
print(s.pstdev(olst), s.pstdev(elst), sep=' And ')
Exemple #26
0
import statistics

score = [30, 40, 60, 70, 80, 90]
print(statistics.mean(score))
print(statistics.harmonic_mean(score))
print(statistics.median(score))
print(statistics.median_low(score))
print(statistics.median_high(score))

import time

print(time.time())

t = time.time()
print(time.ctime(t))

import time
now = time.localtime()
print("%d년 %d월 %d일" % (now.tm_year, now.tm_mon, now.tm_mday))
print("%d:%d;%d" % (now.tm_hour, now.tm_min, now.tm_sec))

import time

start = time.time()
for a in range(1000):
    print(a)
end = time.time()
print(end - start)

print("안녕하세요.")
time.sleep(1)
Exemple #27
0
median = statistics.median(l)
print(median)
# 3

#%%
l_even = [10, 1, 3, 7, 1, 6]

median = statistics.median(l_even)
print(median)
# 4.5

median_low = statistics.median_low(l_even)
print(median_low)
# 3

median_high = statistics.median_high(l_even)
print(median_high)
# 6

print(
    statistics.median_high(l) == statistics.median_low(l) == statistics.median(
        l))
# True
#%%
mode = statistics.mode(l)
print(mode)
# 1

l_mode_error = [1, 2, 3, 4, 5]

# mode = statistics.mode(l_mode_error)
import random,statistics
print(random)
print(help(statistics))
#print(help(random))
print(random.randrange(1000000))
ra=random.choice(['apple','banana','greps'])
print(ra)
data=(2,4,5,3,5,7)
print(data)
print(statistics.mean(data))
print(statistics.median_high(data))
print(statistics.median(data))
Exemple #29
0
    h = intHash32(n)
    #Extract left most 12 bits
    x1 = (h >> 20) & 0xfff
    m1[x1] = 1
    z1 = m - len(m1)
    #Linear counting formula
    u1 = int(m * math.log(float(m) / float(z1)))
    e1 = abs(100 * float(u1 - c) / float(c))
    l1.append(e1)
    print("%d %d %d %f" % (n, c, u1, e1))

    #Extract right most 12 bits
    x2 = h & 0xfff
    m2[x2] = 1
    z2 = m - len(m2)
    u2 = int(m * math.log(float(m) / float(z2)))
    e2 = abs(100 * float(u2 - c) / float(c))
    l2.append(e2)
    print("%d %d %d %f" % (n, c, u2, e2))

    n += 1

print(
    "Left 12 bits error: min=%f max=%f avg=%f median=%f median_low=%f median_high=%f"
    % (min(l1), max(l1), stat.mean(l1), stat.median(l1), stat.median_low(l1),
       stat.median_high(l1)))
print(
    "Right 12 bits error: min=%f max=%f avg=%f median=%f median_low=%f median_high=%f"
    % (min(l2), max(l2), stat.mean(l2), stat.median(l2), stat.median_low(l2),
       stat.median_high(l2)))
Exemple #30
0
import statistics as s

l1 = [4, 6, 2, 5, 7, 7]
x = s.median_high(l1)
print(f'Median_high is {x}')

'''
Output:
Median_high is 6
'''
Exemple #31
0
def display_patches(n_patches,
                    imageset,
                    filestr=None,
                    display=False,
                    figsize=(8, 8),
                    patch_dims=(16, 16),
                    pcobject=None,
                    center=False,
                    labels=True,
                    title=None,
                    cmap='gray',
                    acts=None,
                    sample=False):
    '''
    Function that takes in batch major data (must be a list)
    '''
    fs = factors(n_patches)
    if len(fs) % 2 == 0:
        dims = [statistics.median_low(fs), statistics.median_high(fs)]
    else:
        dims = [statistics.median(fs), statistics.median(fs)]

    fig = plt.figure(figsize=(8, 8))
    axs = [fig.add_subplot(dims[0], dims[1], i + 1) for i in range(n_patches)]

    if labels == True:
        cols = ['{}'.format(col + 1) for col in range(dims[1])]
        rows = ['{}'.format(row + 1) for row in range(dims[0])]
        for ax, col in zip(np.array(axs).reshape(dims)[0], cols):
            ax.set_title(col, fontweight="bold", size=30, pad=15)
        for ax, row in zip(np.array(axs).reshape(dims)[:, 0], rows):
            # ax.set_ylabel(row, rotation=0, size='large', labelpad=10)
            ax.set_ylabel(row,
                          fontweight="bold",
                          size=30,
                          rotation=0,
                          verticalalignment='center',
                          labelpad=25)

    if title is not None:
        # fig.suptitle(title, fontsize=18, y=1.00)
        # fig.suptitle(title,fontweight ="bold",fontsize=20)
        fig.suptitle(title, fontweight="bold", fontsize=50)

    if type(imageset) != list:
        imageset = [imageset[i, :] for i in range(imageset.shape[0])]

    if acts is not None:
        sorted_idxs = np.argsort(
            np.linalg.norm(acts[:n_patches, :], ord=1, axis=1))[::-1]
        imageset = [imageset[:n_patches][idx] for idx in sorted_idxs]

    if sample == False:
        imagelist = zip(axs, imageset)
    else:
        imagelist = zip(axs, random.sample(imageset, n_patches))

    for ax, image in imagelist:
        if center == True:
            vmax = np.max(np.abs([image.min(), image.max()]))
            vmin = -vmax
        else:
            vmax = None
            vmin = None
        if pcobject:
            image = np.reshape(pcobject.inverse_transform(image), patch_dims)
        else:
            image = np.reshape(image, patch_dims)
        ax.imshow(image,
                  cmap=cmap,
                  interpolation='nearest',
                  vmin=vmin,
                  vmax=vmax)
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_ticks([])

    fig.subplots_adjust(wspace=0, hspace=0)
    fig.set_figheight(dims[0])
    fig.set_figwidth(dims[1])
    fig.tight_layout(rect=[0, 0, 1, 0.98])
    figure = plt.gcf()
    if filestr is not None:
        figure.savefig(filestr, dpi='figure')
    if display == False:
        plt.close()
    return (fig, axs)
percent = [
    2.606255012, 1.222935044, 1.283079391, 3.628708901, 6.856455493,
    4.911788292, 2.886928629, 0.781876504, 0.962309543, 2.265437049,
    6.816359262, 3.688853248, 3.468323978, 5.633520449, 4.530874098,
    1.984763432, 0.922213312, 3.327987169, 4.190056135, 5.493183641,
    1.864474739, 10.60545309, 2.425821973, 2.726543705, 8.740978348,
    6.174819567
]

percent.sort()
print(percent)

#this ends with error
#print(median(percent))
#print(median_low(percent))
#print(median_high(percent))

#this succeeds
import statistics
print(statistics.median(percent))
print(statistics.median_low(percent))
print(statistics.median_high(percent))

#this also succeeds
##from statistics import *
##print(median(percent))
##print(median_low(percent))
##print(median_high(percent))
Exemple #33
0
    662, 4, 26, 10, 13, 15, 21, 17, 123, 643, 1, 95, 20, 256, 2048, 1116, 5, 6,
    1, 52, 6, 931, 83, 7, 9, 80, 99, 136, 18, 24, 14, 123, 5
]
print("Mean", statistics.mean(data))
print("Median", statistics.median(data))
try:
    print("Mode", statistics.mode(data))
except statistics.StatisticsError:
    print("No unique mode.")
print("Standard deviation:", statistics.stdev(data))
print("Variance:", statistics.variance(data))

odd_data = [4, 7, 3, 9, 12]
even_data = [4, 7, 3, 9, 12, 2]
print(odd_data)
print(even_data)
print("Median odd data", statistics.median(odd_data))
print("Median even data", statistics.median(even_data))
print("Median low of even data", statistics.median_low(even_data))
print("Median high of even data", statistics.median_high(even_data))
print("Standard deviation:", statistics.stdev(odd_data))
print("Variance:", statistics.variance(odd_data))

# Simple plot to look for outliers
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(x=even_data)
plt.show()
sns.boxplot(x=data)
plt.show()
Exemple #34
0
import statistics
nums = [44, 62, 11, 22, 155, 22, 3333, 444]
z = statistics.median_high(nums)
print(z)
Exemple #35
0
import statistics
from sys import stdin
message = stdin.readline().strip()
N = len(message)
rc = []

for i in range(1, N + 1):
    if N % i == 0:
        rc.append(i)

N_rc = len(rc)

if N_rc % 2 == 1:
    r = statistics.median(rc)
    c = statistics.median(rc)
else:
    r = statistics.median_low(rc)
    c = statistics.median_high(rc)

matrix = [[0 for _ in range(r)] for _ in range(c)]
for i in range(c):
    for j in range(r):
        matrix[i][j] = message[(i * r) + j]

for i in range(r):
    for j in range(c):
        print(matrix[j][i], end="")
	y.append(float(val[4]))
print(len(x),len(y))

peak = 49.9378768165 + 1399.2004138
#print(statistics.mean(y))
#print(statistics.stdev(y))
for val in y:
	if val >peak:
		z.append(val)

print(len(z))

import matplotlib.pyplot as plt
import numpy as np
spread = z
flier_high = [statistics.median_high(z)]
flier_low = [statistics.median_low(z)]

print(flier_high, flier_low)

data = np.concatenate((spread, flier_high, flier_low), 0)

plt.boxplot(data,1)
plt.figure()
plt.show()
'''

for i in range(1,len(x)):
	x[i-1] = float(x[i])-float(x[i-1])

ll = []
Exemple #37
0
 def median_high(self):
         return stats.median_high(self.values())
Exemple #38
0
__author__ = 'luowen'

""" the statisic demo """

import statistics

list1 = [1, 2, 3, 4, 5, 6]

midNum = statistics.mean(list1)
print(midNum)  # get the average data of list1

medianNum = statistics.median(list1)
print(medianNum)  # get median data of list1

medianNumLow = statistics.median_low(list1)
print(medianNumLow)  # get median lower data of list1

medianNumHigh = statistics.median_high(list1)
print(medianNumHigh)  # get median hight data of list1

medianNumGroup = statistics.median_grouped(list1, 10)
print(medianNumGroup)  # get detail information from https://docs.python.org/3/library/statistics.html

Exemple #39
0
def log_graph(G,
              identify_self=True,
              nodecolor="label",
              epoch=0,
              fig_size=(4, 3),
              dpi=300,
              label_node_feat=False,
              edge_vmax=None,
              args=None):
    """
    Args:
            nodecolor: the color of node, can be determined by 'label', or 'feat'. For feat, it needs to
                    be one-hot'
    """
    cmap = plt.get_cmap("Set1")
    plt.switch_backend("agg")
    fig = plt.figure(figsize=fig_size, dpi=dpi)

    node_colors = []
    # edge_colors = [min(max(w, 0.0), 1.0) for (u,v,w) in G.edges.data('weight', default=1)]
    edge_colors = [w for (u, v, w) in G.edges.data("weight", default=1)]

    # maximum value for node color
    vmax = 8
    for i in G.nodes():
        if nodecolor == "feat" and "feat" in G.nodes[i]:
            num_classes = G.nodes[i]["feat"].size()[0]
            if num_classes >= 10:
                cmap = plt.get_cmap("tab20")
                vmax = 19
            elif num_classes >= 8:
                cmap = plt.get_cmap("tab10")
                vmax = 9
            break

    feat_labels = {}
    for i in G.nodes():
        if identify_self and "self" in G.nodes[i]:
            node_colors.append(0)
        elif nodecolor == "label" and "label" in G.nodes[i]:
            node_colors.append(G.nodes[i]["label"] + 1)
        elif nodecolor == "feat" and "feat" in G.nodes[i]:
            # print(G.nodes[i]['feat'])
            feat = G.nodes[i]["feat"].detach().numpy()
            # idx with pos val in 1D array
            feat_class = 0
            for j in range(len(feat)):
                if feat[j] == 1:
                    feat_class = j
                    break
            node_colors.append(feat_class)
            feat_labels[i] = feat_class
        else:
            node_colors.append(1)
    if not label_node_feat:
        feat_labels = None

    plt.switch_backend("agg")
    fig = plt.figure(figsize=fig_size, dpi=dpi)
    #pos_layout = nx.kamada_kawai_layout(G, weight=None)
    pos_layout = nx.fruchterman_reingold_layout(G)

    if G.number_of_nodes() == 0 or G.number_of_edges() == 0:
        edge_vmax = 1
        edge_vmin = 0
    else:
        weights = [d for (u, v, d) in G.edges(data="weight", default=1)]
        if edge_vmax is None:
            edge_vmax = statistics.median_high(
                [d for (u, v, d) in G.edges(data="weight", default=1)])
        min_color = min([d for (u, v, d) in G.edges(data="weight", default=1)])
        # color range: gray to black
        edge_vmin = 2 * min_color - edge_vmax

    nx.draw(
        G,
        pos=pos_layout,
        arrows=True,
        with_labels=True,
        font_size=4,
        labels=feat_labels,
        node_color=node_colors,
        vmin=0,
        vmax=vmax,
        cmap=cmap,
        edge_color=edge_colors,
        edge_cmap=plt.get_cmap("Greys"),
        edge_vmin=edge_vmin,
        edge_vmax=edge_vmax,
        width=1.0,
        node_size=120,
        alpha=0.8,
    )
    fig.axes[0].xaxis.set_visible(False)
    fig.canvas.draw()
Exemple #40
0
print("Arithmetischer Mittelwert: ", statistics.mean(probe1))
# Mitterlwert = mean = Summe der Werte geteilt durch ihre Anzahl
print("Harmonischer Mittelwert: ", statistics.harmonic_mean(probe1))
# harmonischer Mitterlwert = mean = Summe der Werte geteilt durch ihre Kehrwerte
print()

# Median
# Mitte der Zahlenmenge
print("Median: ", statistics.median(probe1))
probe2 = [5, 2, 4, 17, 3]
print("Median: ", statistics.median(probe2))
print()

# Unterer Median
# Mitte der Zahlenmenge, low wertet nach unteren Wert ab
print("Unterer Median: ", statistics.median_low(probe1))
print("Unterer Median: ", statistics.median_low(probe2))
print()

# Oberer Median
# Mitte der Zahlenmenge, high wertet nach oberen Wert auf
print("Oberer Median: ", statistics.median_high(probe1))
print("Oberer Median: ", statistics.median_high(probe2))
print()

# Tupel, Werte eines Dictionary
probe3 = (5, 2, 4, 17)
print("aus Tupel: ", statistics.mean(probe3))
probe4 = {'D': 5, 'NL': 2, 'CH': 4, 'F': 17}
print("aus Dictionary: ", statistics.mean(probe4.values()))
#Arithmetic mean of data:
print("data mean =", statistics.mean(data))

#Middle value (median) of data:
print("data median =",statistics.median(data))

#Low median: is always a member of the data set. When the number of data points is odd the middle value is returned. When it is even,
#the smaller of the two data points is returned:
print("data low median =",statistics.median_low(data))
#Example with a dataset with even number of data points:
print("even data set = ", (1,3,5,7))
print("even data set low median =",statistics.median_low([1,3,5,7]))

#Median high: when the number of points in the data set is odd, this function will return the middle value. When the number of data points
#is even, it will return the highest of the two middle points.
print("data high median =",statistics.median_high(data))
#Example with a dataset with even number of data points:
print("even data set high median =",statistics.median_high([1,3,5,7]))

#MEASURES OF SPREAD:
#Sample standard deviation
print("data standard deviation =", statistics.stdev(data))

#Variance
print("data variance =",statistics.variance(data))

#There is also another measurement of standard deviation, the population standard deviation:
print("data population standard deviation = ",statistics.pstdev(data,mu=None))

#And the population variance of data. In this function there is also the argument mu, that corresponds to the mean of data. If mu is
#not assigned or is 'None', than the men is also calculated by this function.
Exemple #42
0
    def __init__(self, pi, gpio, measurement_time=120):

        self.pi = pi
        self.gpio = gpio
        self.period = 1 / 910 * 1000000
        self.tick_high = None
        self.duty_cycle = None
        self.duty_scale = 1000
        self.list_duty_cycles = []
        self.duty_cycle_min = None
        self.duty_cycle_max = None

        #http://abyz.me.uk/rpi/pigpio/python.html#set_mode
        self.pi.set_mode(gpio=self.gpio, mode=pigpio.INPUT)

        #http://abyz.me.uk/rpi/pigpio/python.html#callback
        self.cb = self.pi.callback(user_gpio=self.gpio,
                                   edge=pigpio.EITHER_EDGE,
                                   func=self.cbf)

        print('{}{}{}'.format('Starting measurements for: ', measurement_time,
                              ' seconds.'))
        print('----------------------------------------------------------')
        time.sleep(measurement_time)

        #stop callback before sorting list to avoid getting added new elements unintended
        #http://abyz.me.uk/rpi/pigpio/python.html#callback
        self.cb.cancel()
        time.sleep(1)

        self.list_duty_cycles = sorted(self.list_duty_cycles)

        #some analyzis of the dc values
        sorted_set = list(sorted(set(self.list_duty_cycles)))
        print('{} {}'.format('Ascending sorted distinct duty cycle values:',
                             sorted_set))
        print('----------------------------------------------------------')
        differences_list = [
            sorted_set[i + 1] - sorted_set[i]
            for i in range(len(sorted_set) - 1)
        ]
        rounded_differences_list = [
            round(differences_list[i], 2)
            for i in range(len(differences_list) - 1)
        ]
        counted_sorted_list = collections.Counter(rounded_differences_list)
        print('{} {}'.format(
            'Ascending counted, sorted and rounded distinct differences between duty cycle values:',
            counted_sorted_list))
        print('----------------------------------------------------------')

        #Median and median_high/median_low are chosen, because the biggest
        #and smallest values are needed, and not an avarage of the smallest
        #and biggest values of the selection.
        #https://docs.python.org/3/library/statistics.html#statistics.median
        print('{} {}'.format('Smallest 250 values:',
                             self.list_duty_cycles[:250]))
        self.duty_cycle_min = statistics.median_high(
            self.list_duty_cycles[:20])
        print('----------------------------------------------------------')
        print('{} {}'.format('Biggest 250 values:',
                             self.list_duty_cycles[-250:]))
        self.duty_cycle_max = statistics.median_low(
            self.list_duty_cycles[-20:])
        print('----------------------------------------------------------')

        print('duty_cycle_min:', round(self.duty_cycle_min, 2))

        print('duty_cycle_max:', round(self.duty_cycle_max, 2))
#CHAPTER 8
# 1. Call a different function from the statistics module

# 2. Create a module named cubed with a function that takes a number as a parameter,
# and returns the number cubed. Import and call the function from another module.

import statistics
import cubed

numbers = [1, 2, 3, 4, 5, 6, 7, 8]

print(statistics.median_high(numbers))

print(cubed.cubed(4))
Exemple #44
0
import statistics as st 
x = [3,1.5,4.5,6.75,2.25,5.75,2.25]

print("_________Question1__________")

print(st.mean(x))
print(st.harmonic_mean(x))
print(st.median(x))
print(st.median_low(x))
print(st.median_high(x))
print(st.median_grouped(x))
print(st.mode(x))
print(st.pstdev(x))
print(st.pvariance(x))
print(st.stdev(x))
print(st.variance(x))


print("_________Question2__________")
import random

print(random.random())
print(random.randrange(10))
print(random.choice(["Ali","Khalid","Hussam"]))
print(random.sample(range(1000),10))
print(random.choice("Orange Academy"))

y = [1,5,8,9,2,4]
random.shuffle(y)
print(y)
Exemple #45
0
 def median(self):
     return statistics.median_high(self._salaries)
Exemple #46
0
import statistics as s

sales = [111, 222, 444, 222, 444, 222, 444, 222, 4455, 222]

#
print(s.mean(sales))  #avg
print(max(sales))  #return max
print(min(sales))  #return min
print(sum(sales))  #return total
print(len(sales))  #return count of items

##
print(s.median(sales))  #return mid value  (if even count : sum or mid 2 val/2)
print(s.median_high(sales))
print(s.median_low(sales))

print(s.variance(sales))  #return var

print(s.stdev(sales))  #return sqrt() for var

print(s.median_high(sales))

print(s.mode(sales))  #return value which has highest freq/count
'''
stats function:
     count/len
     min
     max
     sum
     mean/avv
     mode
Exemple #47
0
def log_graph(
    writer,
    Gc,
    name,
    identify_self=True,
    nodecolor="label",
    epoch=0,
    fig_size=(4, 3),
    dpi=300,
    label_node_feat=False,
    edge_vmax=None,
    args=None,
):
    """
	Args:
		nodecolor: the color of node, can be determined by 'label', or 'feat'. For feat, it needs to
			be one-hot'
	"""
    cmap = plt.get_cmap("Set1")
    plt.switch_backend("agg")
    fig = plt.figure(figsize=fig_size, dpi=dpi)

    node_colors = []
    # edge_colors = [min(max(w, 0.0), 1.0) for (u,v,w) in Gc.edges.data('weight', default=1)]
    edge_colors = [w for (u, v, w) in Gc.edges.data("weight", default=1)]

    # maximum value for node color
    vmax = 8
    for i in Gc.nodes():
        if nodecolor == "feat" and "feat" in Gc.nodes[i]:
            num_classes = Gc.nodes[i]["feat"].size()[0]
            if num_classes >= 10:
                cmap = plt.get_cmap("tab20")
                vmax = 19
            elif num_classes >= 8:
                cmap = plt.get_cmap("tab10")
                vmax = 9
            break

    feat_labels = {}
    for i in Gc.nodes():
        if identify_self and "self" in Gc.nodes[i]:
            node_colors.append(0)
        elif nodecolor == "label" and "label" in Gc.nodes[i]:
            node_colors.append(Gc.nodes[i]["label"] + 1)
        elif nodecolor == "feat" and "feat" in Gc.nodes[i]:
            # print(Gc.nodes[i]['feat'])
            feat = Gc.nodes[i]["feat"].detach().numpy()
            # idx with pos val in 1D array
            feat_class = 0
            for j in range(len(feat)):
                if feat[j] == 1:
                    feat_class = j
                    break
            node_colors.append(feat_class)
            feat_labels[i] = feat_class
        else:
            node_colors.append(1)
    if not label_node_feat:
        feat_labels = None

    plt.switch_backend("agg")
    fig = plt.figure(figsize=fig_size, dpi=dpi)

    if Gc.number_of_nodes() == 0:
        raise Exception("empty graph")
    if Gc.number_of_edges() == 0:
        raise Exception("empty edge")
    # remove_nodes = []
    # for u in Gc.nodes():
    #    if Gc
    pos_layout = nx.kamada_kawai_layout(Gc, weight=None)
    # pos_layout = nx.spring_layout(Gc, weight=None)

    weights = [d for (u, v, d) in Gc.edges(data="weight", default=1)]
    if edge_vmax is None:
        edge_vmax = statistics.median_high(
            [d for (u, v, d) in Gc.edges(data="weight", default=1)])
    min_color = min([d for (u, v, d) in Gc.edges(data="weight", default=1)])
    # color range: gray to black
    edge_vmin = 2 * min_color - edge_vmax
    nx.draw(
        Gc,
        pos=pos_layout,
        with_labels=False,
        font_size=4,
        labels=feat_labels,
        node_color=node_colors,
        vmin=0,
        vmax=vmax,
        cmap=cmap,
        edge_color=edge_colors,
        edge_cmap=plt.get_cmap("Greys"),
        edge_vmin=edge_vmin,
        edge_vmax=edge_vmax,
        width=1.0,
        node_size=50,
        alpha=0.8,
    )
    fig.axes[0].xaxis.set_visible(False)
    fig.canvas.draw()

    if args is None:
        save_path = os.path.join("log/", name + ".pdf")
    else:
        save_path = os.path.join(
            "log",
            name + gen_explainer_prefix(args) + "_" + str(epoch) + ".pdf")
        print("log/" + name + gen_explainer_prefix(args) + "_" + str(epoch) +
              ".pdf")
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    plt.savefig(save_path, format="pdf")

    img = tensorboardX.utils.figure_to_image(fig)
    writer.add_image(name, img, epoch)
Exemple #48
0
#              = (2 * 2)/3
#              = 1.333
#
# Input : arr[] = {13.5, 14.5, 14.8, 15.2, 16.1}
# Output : 14.7707
# =============================================================================

#harmonic mean
print("Harmonic Mean")
print(statistics.harmonic_mean([2.5, 3, 10]))
print("Median")
#median
print(statistics.median([1, 3, 4, 5]))

#median high
print(statistics.median_high([1, 3, 5, 7]))

#median high
print(statistics.median_low([1, 3, 5, 7]))

print("Statistics Grouped Median...")
print(statistics.median_grouped([52, 52, 53, 54]))

#mode
print(statistics.mode(["red", "blue", "blue", "red", "green", "red", "red"]))
print(statistics.mode([1, 1, 2, 2, 2]))

data = [4, 5, 7, 1, 3, 6, 7]
print(statistics.stdev(data))
print(statistics.variance(data))