def lacor():
    from stats.misc.random_field.random_field_1D import RandomField
    rf = RandomField()
    x = np.linspace(0,30, 200)
    y = rf.acor(x,10.)
    yy = rf.acor(x,3.0)
    plt.plot(x, y, color = 'black', lw = 2)
    plt.plot(x, yy, color = 'black', lw = 2)
    plt.xticks(fontsize = 20)
    plt.yticks(fontsize = 20)
    plt.show()
Exemple #2
0
def random_field():
    rf = RandomField(lacor=3.,
                     length=500.,
                     nx=500,
                     distr_type='Weibull',
                     shape=12.,
                     scale=5.0,
                     loc=0.0)
    plt.plot(rf.xgrid, rf.random_field, lw=1, color='grey', label='Weibull')
    rf.lacor = 10.0
    plt.plot(rf.xgrid, rf.random_field, lw=2, color='black', label='Weibull')
    plt.ylim(0)
Exemple #3
0
def random_field():
    rf = RandomField(lacor=3.,
                     length=500.,
                     nx=500,
                     distr_type='Weibull',
                     shape=12.,
                     scale=5.0,
                     loc=0.0)
    plt.plot(rf.xgrid, rf.random_field, lw=1, color='grey', label='Weibull')
    rf.lacor = 10.0
    plt.plot(rf.xgrid, rf.random_field, lw=2, color='black', label='Weibull')
    plt.ylim(0)
Exemple #4
0
def strength():
    length = 2000.
    nx = 2000
    cracks = []
    strengths = []
    maxsigma = [12., 15., 20., 22., 24.]
    Vfs = [0.05, 0.01, 0.013, 0.017, 0.02]
    for i, Vf in enumerate(Vfs):
        random_field = RandomField(
            seed=False,
            lacor=5.0,
            length=length,
            nx=800,
            nsim=1,
            loc=.0,
            shape=8.,
            scale=3.2,
        )

        reinf1 = ContinuousFibers(r=0.0035,
                                  tau=RV('weibull_min',
                                         loc=0.0,
                                         shape=1.,
                                         scale=0.03),
                                  V_f=Vf,
                                  E_f=180e3,
                                  xi=fibers_MC(m=5.0, sV0=0.003),
                                  label='carbon',
                                  n_int=500)

        CB_model = CompositeCrackBridge(
            E_m=25e3,
            reinforcement_lst=[reinf1],
        )

        scm = SCM(
            length=length,
            nx=nx,
            random_field=random_field,
            CB_model=CB_model,
            load_sigma_c_arr=np.linspace(0.01, maxsigma[i], 100),
        )

        scm_view = SCMView(model=scm)
        scm_view.model.evaluate()

        eps, sigma = scm_view.eps_sigma
        plt.plot(eps, sigma, lw=1, label=str(Vf))
        strengths.append(np.max(sigma))
        cracks.append(len(scm_view.model.cracks_list[-1]))

    plt.legend(loc='best')
    plt.xlabel('composite strain [-]')
    plt.ylabel('composite stress [MPa]')
    plt.figure()
    plt.plot(Vfs, strengths, label='strengths')
    plt.figure()
    plt.plot(Vfs, cracks, label='cracks')
    print strengths
    print cracks
Exemple #5
0
def mtrx_shape():
    # shapes: 1000, 16.5, 8.0; scales: 3.0 3.1, 3.2
    length = 2000.
    nx = 2000
    random_field = RandomField(seed=False,
                               lacor=5.,
                               length=length,
                               nx=1000,
                               nsim=1,
                               loc=.0,
                               shape=8.,
                               scale=3.2,
                               distr_type='Weibull')
    plt.plot(random_field.xgrid,
             random_field.random_field,
             lw=1,
             color='black')
    plt.ylim(0)
    plt.show()

    reinf1 = ContinuousFibers(
        r=0.0035,
        tau=0.03,  #RV('weibull_min', loc=0.0, shape=3., scale=0.03),
        V_f=0.01,
        E_f=180e3,
        xi=fibers_MC(m=5.0, sV0=10.003),
        label='carbon',
        n_int=500)

    CB_model = CompositeCrackBridge(
        E_m=25e3,
        reinforcement_lst=[reinf1],
    )

    scm = SCM(
        length=length,
        nx=nx,
        random_field=random_field,
        CB_model=CB_model,
        load_sigma_c_arr=np.linspace(0.01, 8., 100),
    )

    scm_view = SCMView(model=scm)
    scm_view.model.evaluate()

    eps, sigma = scm_view.eps_sigma
    plt.figure()
    plt.plot(eps, sigma, color='black', lw=2, label='model')
    plt.legend(loc='best')
    plt.xlabel('composite strain [-]')
    plt.ylabel('composite stress [MPa]')
Exemple #6
0
def sigmamu_shape_study():
    length = 2000.
    nx = 3000
    lacor = 1.0
    sigmamumin = 3.0
    reinf = ContinuousFibers(r=0.0035,
                          tau=RV('gamma', shape=0.2, scale=0.5),
                          V_f=0.01,
                          E_f=180e3,
                          xi=1000.,
                          label='carbon',
                          n_int=500)
    
    ccb = CompositeCrackBridge(E_m=25e3,
                                 reinforcement_lst=[reinf],
                                 )

    #for mm in [5., 10., 15., 20., 25., 30., 35.]:
    for mm in [5., 10., 15., 20., 30.]:
        fLc = (lacor/(lacor+length))**(1./mm)
        sm = sigmamumin / (fLc * gamma(1. + 1 / mm))
        random_field = RandomField(seed=True,
                               lacor=1.,
                               length=length,
                               nx=500,
                               nsim=1,
                               loc=.0,
                               shape=mm,
                               scale=sm,
                               distr_type='Weibull')
        
        scm = SCM(length=length,
                  nx=nx,
                  random_field=random_field,
                  CB_model=ccb,
                  load_sigma_c_arr=np.linspace(0.01, 20., 200),
                  n_BC_CB=15)
    
        scm_view = SCMView(model=scm)
        scm_view.model.evaluate()
        eps, sigma = scm_view.eps_sigma
        plt.plot(eps, sigma, label='mm = ' + str(mm) + ' sm = ' + str(sm))
    plt.xlabel('composite strain [-]')
    plt.ylabel('composite stress [MPa]')
    plt.legend(loc='best')
    plt.xlim(0)
    plt.ylim(0)
    plt.show()
Exemple #7
0
def p_tau():
    length = 5000.
    nx = 5000
    for tau_shape in [1.0, 2.0, 1000.]:
        random_field = RandomField(seed=False,
                                   lacor=5.0,
                                   length=length,
                                   nx=1000,
                                   nsim=1,
                                   loc=.0,
                                   shape=8.,
                                   scale=3.2,
                                   distribution='Weibull')

        reinf1 = ContinuousFibers(r=0.0035,
                                  tau=RV('weibull_min',
                                         loc=0.0,
                                         shape=tau_shape,
                                         scale=0.03),
                                  V_f=0.01,
                                  E_f=180e3,
                                  xi=fibers_MC(m=5.0, sV0=10.003),
                                  label='carbon',
                                  n_int=500)

        CB_model = CompositeCrackBridge(
            E_m=25e3,
            reinforcement_lst=[reinf1],
        )

        scm = SCM(
            length=length,
            nx=nx,
            random_field=random_field,
            CB_model=CB_model,
            load_sigma_c_arr=np.linspace(0.01, 8., 100),
        )

        scm_view = SCMView(model=scm)
        scm_view.model.evaluate()

        eps, sigma = scm_view.eps_sigma
        plt.plot(eps, sigma, lw=1, label=str(tau_shape))
    plt.legend(loc='best')
    plt.xlabel('composite strain [-]')
    plt.ylabel('composite stress [MPa]')
def r_field():
    from stats.misc.random_field.random_field_1D import RandomField
    rf = RandomField(xgrid = np.linspace(0, 1000, 500))
    rf.distribution = 'Weibull'    
    rf.lacor = 3.0
    rf.shape = 10.
    rf.scale = 5.
    rf.loc = 0.0
    x = rf.xgrid
    y = rf.random_field
    plt.plot(x,y, color = 'grey', lw = 1, label = 'lacor = %.1f' %rf.lacor)
    rf.lacor = 10.
    y = rf.random_field
    plt.plot(x,y, color = 'black', lw = 2, label = 'lacor = %.1f' %rf.lacor)
    plt.legend(loc = 'best')
    plt.xticks(fontsize = 20)
    plt.yticks(fontsize = 20)
    plt.show()
Exemple #9
0
def ld():
    length = 1000.
    nx = 3000
    random_field = RandomField(seed=True,
                           lacor=1.,
                           length=length,
                           nx=1000,
                           nsim=1,
                           loc=.0,
                           shape=45.,
                           scale=3.360,
                           distr_type='Weibull')
    
    
    reinf_cont = ContinuousFibers(r=3.5e-3,
                              tau=RV('gamma', loc=0.0, scale=1.534, shape=.0615),
                              V_f=0.01,
                              E_f=181e3,
                              xi=fibers_MC(m=8.6, sV0=11.4e-3),
                              label='carbon',
                              n_int=100)
    
    CB_model = CompositeCrackBridge(E_m=25e3,
                                 reinforcement_lst=[reinf_cont],
                                 )
    scm = SCM(length=length,
              nx=nx,
              random_field=random_field,
              CB_model=CB_model,
              load_sigma_c_arr=np.linspace(0.01, 30., 200),
              n_BC_CB = 12)
    
    scm_view = SCMView(model=scm)
    scm_view.model.evaluate() 
    eps, sigma = scm_view.eps_sigma
    plt.plot(eps, sigma, color='black', lw=2, label='continuous fibers')
    
    plt.legend(loc='best')
    plt.xlabel('composite strain [-]')
    plt.ylabel('composite stress [MPa]')
    plt.show()
        cb = NonLinearCB(
            A_c=9. * 95.,
            tstepper=ts,
            max_w_p=r * 1.84 * 18 * 1500,  # [N]
            slip=[
                0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2,
                1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.
            ],
            bond=bond_18,
            n_BC=100)

        random_field = RandomField(seed=False,
                                   lacor=1.,
                                   length=2000,
                                   nx=1000,
                                   nsim=1,
                                   loc=.0,
                                   stdev=0.05,
                                   mean=5.,
                                   distr_type='Gauss')

        ctt = CompositeTensileTest(n_x=1000,
                                   L=2000,
                                   cb=cb,
                                   sig_mu_x=random_field.random_field,
                                   strength=r * 1.84 * 18. * 1500. / 9. / 95.)

        sig_c_i, z_x_i, BC_x_i, sig_c_u, n_crack = ctt.get_cracking_history()
        load_arr1 = np.unique(
            np.hstack((np.linspace(0, sig_c_u, 100), sig_c_i)))
        eps_c_arr1 = ctt.get_eps_c_arr(sig_c_i, z_x_i, BC_x_i, load_arr1)
                plt.savefig(savepath)
                plt.clf()

        return eps_arr

if __name__ == '__main__':

    cb = NonLinearCB(slip=[0, 0.1, 0.2, 0.3, 0.4, 0.5],
                     bond=[0., 10., 20., 30., 40., 50.],
                     n_BC=100)

    random_field = RandomField(seed=False,
                               lacor=1.,
                               length=500,
                               nx=1000,
                               nsim=1,
                               loc=.0,
                               shape=60.,
                               scale=1.5,
                               distr_type='Weibull')

    ctt = CompositeTensileTest(n_x=1000,
                               L=500,
                               cb=cb,
                               sig_mu_x=random_field.random_field)

    sig_c_i, z_x_i, BC_x_i, sig_c_u, n_crack = ctt.get_cracking_history()
    load_arr = np.unique(np.hstack((np.linspace(0, sig_c_u, 100), sig_c_i)))
    eps_c_arr = ctt.get_eps_c_arr(sig_c_i, z_x_i, BC_x_i, load_arr)
    plt.plot(eps_c_arr, load_arr, 'k', lw=2, label='v_f=1.5%')
    plt.show()
Exemple #12
0
                raise ValueError('''got stuck in loop,
                try to adapt x, w, BC ranges''')
            last_pos = float(crack_position)


if __name__ == '__main__':
    from quaducom.meso.homogenized_crack_bridge.elastic_matrix.reinforcement import ContinuousFibers, ShortFibers
    from stats.pdistrib.weibull_fibers_composite_distr import fibers_MC
    from matplotlib import pyplot as plt
    length = 100.
    nx = 500
    random_field = RandomField(seed=True,
                               lacor=1.,
                               length=length,
                               nx=500,
                               nsim=1,
                               loc=.0,
                               shape=15.,
                               scale=4.0,
                               distr_type='Weibull')

    reinf1 = ContinuousFibers(r=3.5e-3,
                              tau=RV('weibull_min',
                                     loc=0.01,
                                     scale=.01,
                                     shape=2.),
                              V_f=0.05,
                              E_f=200e3,
                              xi=fibers_MC(m=7., sV0=0.01),
                              label='carbon',
                              n_int=100)
Exemple #13
0
                sigc_max = new_sigc_max
            if float(crack_position) == last_pos:
                raise ValueError('''got stuck in loop,
                try to adapt x, w, BC ranges''')
            last_pos = float(crack_position)
            print sigc_min


if __name__ == '__main__':
    length = 2000.
    nx = 2000
    random_field = RandomField(seed=True,
                               lacor=10.,
                               xgrid=np.linspace(0., length, 400),
                               nsim=1,
                               loc=.0,
                               shape=15.,
                               scale=6.,
                               non_negative_check=True,
                               distribution='Weibull')

    reinf = Reinforcement(r=0.01,
                          tau=RV('uniform', loc=0.01, scale=.5),
                          V_f=0.05,
                          E_f=200e3,
                          xi=WeibullFibers(shape=5., sV0=0.00618983207723),
                          n_int=50,
                          label='carbon')

    model = CompositeCrackBridge(
        E_m=25e3,
Exemple #14
0
    max_w_p=1.84 * 8 * 2167,  # [N]
    slip=slip,
    bond=bond,
    n_BC=100)
'''
uncomment this loop in order to run multiple random simulations at once
'''
# n_crack_end = 0
# while n_crack_end < 3:

random_field = RandomField(
    seed=False,
    lacor=4,
    length=350,
    nx=1000,
    nsim=1,
    loc=.0,
    # stdev=0.2,
    # mean=3.22,
    shape=5,
    scale=8.60718591,
    distr_type='Weibull')

ctt = CompositeTensileTest(n_x=1000,
                           L=350,
                           cb=cb,
                           sig_mu_x=random_field.random_field,
                           strength=21.26)

sig_c_i, z_x_i, BC_x_i, sig_c_u, n_crack = ctt.get_cracking_history()

#     print n_crack
Exemple #15
0
def valid(CS, param_set, w_max):
    plt.figure()
    TT()
    from quaducom.meso.homogenized_crack_bridge.elastic_matrix.reinforcement import ContinuousFibers
    from stats.pdistrib.weibull_fibers_composite_distr import fibers_MC
    length = 250.
    nx = 5000
    tau_loc, tau_shape, xi_shape = param_set
    E_f = 182e3
    mu_tau = 1.3 * 3.5e-3 * 3.6 * (1. - 0.01) / (2. * 0.01 * CS)
    tau_scale = (mu_tau - tau_loc) / tau_shape
    xi_scale = 3243. / (182e3 * (pi * 3.5e-3**2 * 50.)**(-1. / xi_shape) *
                        gamma(1 + 1. / xi_shape))
    #xi_scale = 1578. / (182e3 * (pi * 3.5e-3 **2 * 500. * e)**(-1./xi_shape))
    n_CB = 8
    ld = False
    w_width = False
    w_density = False

    random_field1 = RandomField(seed=False,
                                lacor=1.,
                                length=length,
                                nx=800,
                                nsim=1,
                                loc=.0,
                                shape=45.,
                                scale=3.6,
                                distr_type='Weibull')

    reinf1 = ContinuousFibers(r=3.5e-3,
                              tau=RV('gamma',
                                     loc=tau_loc,
                                     scale=tau_scale,
                                     shape=tau_shape),
                              V_f=0.01,
                              E_f=E_f,
                              xi=fibers_MC(m=xi_shape, sV0=xi_scale),
                              label='carbon',
                              n_int=500)

    CB_model1 = CompositeCrackBridge(
        E_m=25e3,
        reinforcement_lst=[reinf1],
    )

    scm1 = SCM(length=length,
               nx=nx,
               random_field=random_field1,
               CB_model=CB_model1,
               load_sigma_c_arr=np.linspace(0.01, 35., 100),
               n_BC_CB=n_CB)

    scm_view1 = SCMView(model=scm1)
    scm_view1.model.evaluate()
    eps1, sigma1 = scm_view1.eps_sigma
    eps11, sigma11 = scm_view1.eps_sigma_altern
    cr_lst1 = scm_view1.model.cracking_stress_lst
    interp1 = interp1d(sigma1, eps1)
    plt.plot(eps11,
             sigma11,
             color='red',
             lw=2,
             label='Vf=1.0, crack spacing = ' +
             str(length / float(len(cr_lst1))))
    #plt.plot(eps11, sigma11, color='black', ls='dashed', lw=2, label='altern eps')
    plt.plot(interp1(np.array(cr_lst1) - np.max(sigma1) / 100.),
             np.array(cr_lst1) - np.max(sigma1) / 100., 'ro')

    if len(cr_lst1) > 2:

        random_field2 = RandomField(seed=False,
                                    lacor=1.,
                                    length=length,
                                    nx=700,
                                    nsim=1,
                                    loc=.0,
                                    shape=45.,
                                    scale=4.38,
                                    distr_type='Weibull')

        reinf2 = ContinuousFibers(r=3.5e-3,
                                  tau=RV('gamma',
                                         loc=tau_loc,
                                         scale=tau_scale,
                                         shape=tau_shape),
                                  V_f=0.015,
                                  E_f=E_f,
                                  xi=fibers_MC(m=xi_shape, sV0=xi_scale),
                                  label='carbon',
                                  n_int=500)

        CB_model2 = CompositeCrackBridge(
            E_m=25e3,
            reinforcement_lst=[reinf2],
        )

        scm2 = SCM(length=length,
                   nx=nx,
                   random_field=random_field2,
                   CB_model=CB_model2,
                   load_sigma_c_arr=np.linspace(0.01, 40., 100),
                   n_BC_CB=n_CB)

        scm_view2 = SCMView(model=scm2)
        scm_view2.model.evaluate()
        eps2, sigma2 = scm_view2.eps_sigma
        cr_lst2 = scm_view2.model.cracking_stress_lst
        interp2 = interp1d(sigma2, eps2)

        plt.plot(eps2,
                 sigma2,
                 color='blue',
                 lw=2,
                 label='Vf=1.5, crack spacing = ' +
                 str(length / float(len(cr_lst2))))
        plt.plot(interp2(np.array(cr_lst2) - np.max(sigma2) / 100.),
                 np.array(cr_lst2) - np.max(sigma2) / 100., 'bo')
    plt.xlabel('composite strain [-]')
    plt.ylabel('composite stress [MPa]')
    plt.xlim(0., np.max(eps1) * 1.15)
    plt.legend(loc='best')
    plt.savefig('validation_figsCS%1.f/w_max%.1f.png' % (CS, w_max))
    plt.close()

    if ld == True:
        plt.plot(eps1,
                 sigma1,
                 color='red',
                 lw=2,
                 label='Vf=1.0, crack spacing = ' +
                 str(length / float(len(cr_lst1))))
        #plt.plot(eps11, sigma11, color='black', ls='dashed', lw=2, label='altern eps')
        plt.plot(interp1(np.array(cr_lst1) - np.max(sigma1) / 100.),
                 np.array(cr_lst1) - np.max(sigma1) / 100., 'ro')
        plt.plot(eps2,
                 sigma2,
                 color='blue',
                 lw=2,
                 label='Vf=1.5, crack spacing = ' +
                 str(length / float(len(cr_lst2))))
        plt.plot(interp2(np.array(cr_lst2) - np.max(sigma2) / 100.),
                 np.array(cr_lst2) - np.max(sigma2) / 100., 'bo')
        plt.xlabel('composite strain [-]')
        plt.ylabel('composite stress [MPa]')
        plt.xlim(0., np.max(eps1) * 1.1)
        plt.legend(loc='best')

    if w_width == True:
        plt.figure()
        plt.plot(scm_view1.model.load_sigma_c_arr, scm_view1.w_mean)
        plt.plot(scm_view1.model.load_sigma_c_arr, scm_view1.w_max)
#         plt.plot(scm_view2.model.load_sigma_c_arr, scm_view2.w_mean)
#         plt.plot(scm_view2.model.load_sigma_c_arr, scm_view2.w_max)

    if w_density == True:
        plt.figure()
        plt.plot(scm_view1.model.load_sigma_c_arr, scm_view1.w_density)
Exemple #16
0
plt.rcParams.update(params)

fig = p.figure(facecolor='white', figsize=(15.6 / 2.54, 7.8 / 2.54), dpi=100)
fig.subplots_adjust(left=0.1,
                    right=0.96,
                    bottom=0.18,
                    top=0.94,
                    wspace=0.3,
                    hspace=0.3)

for s, m in zip(s_arr, m_arr):
    random_field = RandomField(seed=False,
                               lacor=l_rho,
                               length=length,
                               nx=1000,
                               nsim=1,
                               loc=.0,
                               scale=s,
                               shape=m,
                               distr_type='Weibull')

    p.subplot(121)
    p.plot(random_field.xgrid, random_field.random_field)
    p.ylim(ymin=0.0)

    p.subplot(122)
    p.subplot(122).set_ylabel('Probability')
    p.subplot(122).set_xlabel('Composite Stress [MPa]')
    sig_pdf_arr = weibull_min.pdf(sig_arr, m, 0, s)
    p.plot(sig_arr, sig_pdf_arr, label='m = %1.0f ' % random_field.shape)
    p.legend()