tvars = dict(la = RV('norm', m_la, std_la), xi = RV('norm', m_xi, std_xi) ), ) #=========================================================================== # Exact solution #=========================================================================== def mu_q_ex(e, m_xi, std_xi, m_la): return e * (0.5 - 0.5 * erf(0.5 * math.sqrt(2) * (e - m_xi) / std_xi)) * m_la #=========================================================================== # Lab #=========================================================================== slab = SPIRRIDLAB(s = s, save_output = True, show_output = True, exact_arr = mu_q_ex(e_arr, m_xi, std_xi, m_la)) #=========================================================================== # Compare efficiency of sampling types #=========================================================================== powers = np.linspace(1, math.log(1000, 10), 80) n_int_range = np.array(np.power(10, powers), dtype = int) # slab.sampling_efficiency(n_int_range = n_int_range) #=========================================================================== # Compare the structure of sampling #=========================================================================== # slab.sampling_structure(ylim = 18.0, xlim = 1.2,)
f = RV('uniform', 0.0, 0.03)) #=========================================================================== # Integrator object #=========================================================================== s = SPIRRID(q = ConstantFrictionFiniteFiber(), e_arr = e_arr, n_int = 30, tvars = tvars, ) #=========================================================================== # Lab #=========================================================================== slab = SPIRRIDLAB(s = s, save_output = True, show_output = True, qname = 'fiber_po_8p', ) #=========================================================================== # Compare efficiency of sampling types #=========================================================================== powers = np.linspace(1, math.log(20, 10), 6) n_int_range = np.array(np.power(10, powers), dtype = int) #slab.sampling_efficiency(n_int_range = n_int_range) #=========================================================================== # Compare the structure of sampling #=========================================================================== #slab.sampling_structure(ylim = 10.0, xlim = 0.012, plot_idx = [0, 3])