def test_stata_writer_pandas():
    buf = BytesIO()
    dta = macrodata.load_pandas().data
    dta4 = dta.copy()
    for col in ('year', 'quarter'):
        dta[col] = dta[col].astype(np.int64)
        dta4[col] = dta4[col].astype(np.int32)
    # dta is int64 'i8'  given to Stata writer
    with pytest.warns(FutureWarning):
        writer = StataWriter(buf, dta)

    with warnings.catch_warnings(record=True) as w:
        writer.write_file()
        assert len(w) == 0
    buf.seek(0)

    with pytest.warns(FutureWarning):
        dta2 = genfromdta(buf)

    dta5 = DataFrame.from_records(dta2)
    # dta2 is int32 'i4'  returned from Stata reader

    if dta5.dtypes[1] is np.dtype('int64'):
        assert_frame_equal(dta.reset_index(), dta5)
    else:
        # do not check index because it has different size, int32 versus int64
        assert_frame_equal(dta4, dta5[dta5.columns[1:]])
def test_datetime_roundtrip():
    dta = np.array([(1, datetime(2010, 1, 1), 2), (2, datetime(2010, 2, 1), 3),
                    (4, datetime(2010, 3, 1), 5)],
                   dtype=[('var1', float), ('var2', object), ('var3', float)])
    buf = BytesIO()

    with pytest.warns(FutureWarning):
        writer = StataWriter(buf, dta, {"var2": "tm"})

    writer.write_file()
    buf.seek(0)

    with pytest.warns(FutureWarning):
        dta2 = genfromdta(buf)

    assert_equal(dta, dta2)

    dta = DataFrame.from_records(dta)
    buf = BytesIO()

    with pytest.warns(FutureWarning):
        writer = StataWriter(buf, dta, {"var2": "tm"})

    writer.write_file()
    buf.seek(0)

    with pytest.warns(FutureWarning):
        dta2 = genfromdta(buf, pandas=True)

    assert_frame_equal(dta, dta2.drop('index', axis=1))
Exemple #3
0
    def test_sort(self):
        # data frame
        sorted_data, index = self.grouping.sort(self.data)
        expected_sorted_data = self.data.sort_index()

        assert_frame_equal(sorted_data, expected_sorted_data)
        np.testing.assert_(isinstance(sorted_data, pd.DataFrame))
        np.testing.assert_(not index.equals(self.grouping.index))

        # make sure it copied
        if hasattr(sorted_data, 'equals'):  # newer pandas
            np.testing.assert_(not sorted_data.equals(self.data))

        # 2d arrays
        sorted_data, index = self.grouping.sort(self.data.values)
        np.testing.assert_array_equal(sorted_data, expected_sorted_data.values)
        np.testing.assert_(isinstance(sorted_data, np.ndarray))

        # 1d series
        series = self.data[self.data.columns[0]]
        sorted_data, index = self.grouping.sort(series)

        expected_sorted_data = series.sort_index()
        assert_series_equal(sorted_data, expected_sorted_data)
        np.testing.assert_(isinstance(sorted_data, pd.Series))
        if hasattr(sorted_data, 'equals'):
            np.testing.assert_(not sorted_data.equals(series))

        # 1d array
        array = series.values
        sorted_data, index = self.grouping.sort(array)

        expected_sorted_data = series.sort_index().values
        np.testing.assert_array_equal(sorted_data, expected_sorted_data)
        np.testing.assert_(isinstance(sorted_data, np.ndarray))
Exemple #4
0
def test_repeated_measures_aggregate_compare_with_ezANOVA():
    # Results should reproduces those from R's `ezANOVA` (library ez).
    ez = pd.DataFrame(
        {
            'F Value': [
                8.7650709, 8.4985785, 20.5076546, 0.8457797, 21.7593382,
                6.2416695, 5.4253359
            ],
            'Num DF': [1, 2, 1, 2, 1, 2, 2],
            'Den DF': [7, 14, 7, 14, 7, 14, 14],
            'Pr > F': [
                0.021087505, 0.003833921, 0.002704428, 0.450021759,
                0.002301792, 0.011536846, 0.018010647
            ]
        },
        index=pd.Index(['A', 'B', 'D', 'A:B', 'A:D', 'B:D', 'A:B:D']))
    ez = ez[['F Value', 'Num DF', 'Den DF', 'Pr > F']]

    double_data = pd.concat([data, data], axis=0)
    df = (AnovaRM(double_data,
                  'DV',
                  'id',
                  within=['A', 'B', 'D'],
                  aggregate_func=np.mean).fit().anova_table)

    assert_frame_equal(ez, df, check_dtype=False)
Exemple #5
0
def test_should_calculate_addChangePct():
    """
      Adds the close percentage to the DataFrame : close_pc
      Adds the cumulative returns the DataFrame : close_cpc

      Excellent video to understand cumulative returns : https://www.youtube.com/watch?v=fWHQwqT3lNY
    """

    # GIVEN a series of values
    closes_list = [0.0003, 0.0004, 0.0010, 0.0020, 0.0009]
    df = pd.DataFrame({
        'date': [
            '2021-10-10 14:30:00', '2021-10-10 14:31:00',
            '2021-10-10 14:32:00', '2021-10-10 14:33:00', '2021-10-10 14:34:00'
        ],
        'close':
        closes_list
    })
    df['date'] = pd.to_datetime(df['date'], format="%Y-%d-%m %H:%M:%S")
    df.set_index(['date'])

    ta = TechnicalAnalysis(df)

    # WHEN calculate the percentage evolution and cumulative returns percentage
    ta.addChangePct()

    # THEN percentage evolution and cumulative returns percentage should be added to dataframe
    actual = ta.getDataFrame()

    close_pc = [
        calculate_percentage_evol(closes_list[0], closes_list[0]),
        calculate_percentage_evol(closes_list[0], closes_list[1]),
        calculate_percentage_evol(closes_list[1], closes_list[2]),
        calculate_percentage_evol(closes_list[2], closes_list[3]),
        calculate_percentage_evol(closes_list[3], closes_list[4]),
    ]

    close_cpc = []
    close_cpc.append(0.000000)
    close_cpc.append((1 + close_pc[1]) * (1 + close_cpc[0]) - 1)
    close_cpc.append((1 + close_pc[2]) * (1 + close_cpc[1]) - 1)
    close_cpc.append((1 + close_pc[3]) * (1 + close_cpc[2]) - 1)
    close_cpc.append((1 + close_pc[4]) * (1 + close_cpc[3]) - 1)

    expected = pd.DataFrame({
        'date': [
            '2021-10-10 14:30:00', '2021-10-10 14:31:00',
            '2021-10-10 14:32:00', '2021-10-10 14:33:00', '2021-10-10 14:34:00'
        ],
        'close':
        closes_list,
        'close_pc':
        close_pc,
        'close_cpc':
        close_cpc
    })
    expected['date'] = pd.to_datetime(df['date'], format="%Y-%d-%m %H:%M:%S")
    expected.set_index(['date'])
    assert_frame_equal(actual, expected)
Exemple #6
0
 def test_cohn(self):
     cols = ['nuncen_above', 'nobs_below', 'ncen_equal', 'prob_exceedance']
     cohn = ros.cohn_numbers(self.df, self.rescol, self.cencol)
     # Use round in place of the deprecated check_less_precise arg
     assert_frame_equal(
         np.round(cohn[cols], 3),
         np.round(self.expected_cohn[cols], 3),
     )
Exemple #7
0
    def test_pandas(self):
        results = tools._ensure_2d(self.df, False)
        assert_frame_equal(results[0], self.df)
        assert_array_equal(results[1], self.df.columns)

        results = tools._ensure_2d(self.series, False)
        assert_frame_equal(results[0], self.df.iloc[:, [0]])
        assert_equal(results[1], self.df.columns[0])
Exemple #8
0
 def test_add_constant_dataframe(self):
     df = pd.DataFrame([[1.0, 'a', 4], [2.0, 'bc', 9], [3.0, 'def', 16]])
     output = tools.add_constant(df)
     expected = pd.Series([1.0, 1.0, 1.0], name='const')
     assert_series_equal(expected, output['const'])
     dfc = df.copy()
     dfc.insert(0, 'const', np.ones(3))
     assert_frame_equal(dfc, output)
Exemple #9
0
 def test_add_constant_dataframe(self):
     df = pd.DataFrame([[1.0, "a", 4], [2.0, "bc", 9], [3.0, "def", 16]])
     output = tools.add_constant(df)
     expected = pd.Series([1.0, 1.0, 1.0], name="const")
     assert_series_equal(expected, output["const"])
     dfc = df.copy()
     dfc.insert(0, "const", np.ones(3))
     assert_frame_equal(dfc, output)
Exemple #10
0
def check_predict_types(results):
    """
    Check that the `predict` method of the given results object produces the
    correct output type.

    Parameters
    ----------
    results : Results

    Raises
    ------
    AssertionError
    """
    res = results
    # squeeze to make 1d for single regressor test case
    p_exog = np.squeeze(np.asarray(res.model.exog[:2]))

    # ignore wrapper for isinstance check
    from statsmodels.genmod.generalized_linear_model import GLMResults
    from statsmodels.discrete.discrete_model import DiscreteResults
    from statsmodels.compat.pandas import assert_frame_equal, assert_series_equal

    # possibly unwrap -- GEE has no wrapper
    results = getattr(results, '_results', results)

    if isinstance(results, (GLMResults, DiscreteResults)):
        # SMOKE test only  TODO: mark this somehow
        res.predict(p_exog)
        res.predict(p_exog.tolist())
        res.predict(p_exog[0].tolist())
    else:
        fitted = res.fittedvalues[:2]
        assert_allclose(fitted, res.predict(p_exog), rtol=1e-12)
        # this needs reshape to column-vector:
        assert_allclose(fitted,
                        res.predict(np.squeeze(p_exog).tolist()),
                        rtol=1e-12)
        # only one prediction:
        assert_allclose(fitted[:1],
                        res.predict(p_exog[0].tolist()),
                        rtol=1e-12)
        assert_allclose(fitted[:1], res.predict(p_exog[0]), rtol=1e-12)

        # Check that pandas wrapping works as expected
        exog_index = range(len(p_exog))
        predicted = res.predict(p_exog)

        cls = pd.Series if p_exog.ndim == 1 else pd.DataFrame
        predicted_pandas = res.predict(cls(p_exog, index=exog_index))

        # predicted.ndim may not match p_exog.ndim because it may be squeezed
        #  if p_exog has only one column
        cls = pd.Series if predicted.ndim == 1 else pd.DataFrame
        predicted_expected = cls(predicted, index=exog_index)
        if isinstance(predicted_expected, pd.Series):
            assert_series_equal(predicted_expected, predicted_pandas)
        else:
            assert_frame_equal(predicted_expected, predicted_pandas)
def test_repeated_measures_aggregation_one_subject_duplicated():
    df1 = AnovaRM(data, 'DV', 'id', within=['A', 'B', 'D']).fit()
    df2 = AnovaRM(data.append(data.loc[data['id'] == '1', :]).reset_index(),
                  'DV',
                  'id',
                  within=['A', 'B', 'D'],
                  aggregate_func=np.mean).fit()

    assert_frame_equal(df1.anova_table, df2.anova_table)
def test_repeated_measures_aggregation():
    df1 = AnovaRM(data, 'DV', 'id', within=['A', 'B', 'D']).fit()
    df2 = AnovaRM(data.append(data),
                  'DV',
                  'id',
                  within=['A', 'B', 'D'],
                  aggregate_func=np.mean).fit()

    assert_frame_equal(df1.anova_table, df2.anova_table)
Exemple #13
0
def test_categorical_dataframe(string_var):
    df = pd.DataFrame(string_var)
    design = tools.categorical(df, "string_var", drop=True)
    dummies = pd.get_dummies(pd.Categorical(string_var))
    assert_frame_equal(design, dummies)

    df = pd.DataFrame({"apple": string_var, "ban": string_var})
    design = tools.categorical(df, "apple", drop=True)
    assert_frame_equal(design, dummies)
Exemple #14
0
    def test_noop(self):
        df = make_dataframe()
        df.values[[2, 5, 10], [2, 3, 1]] = np.nan
        y, X = df[df.columns[0]], df[df.columns[1:]]
        data, _ = sm_data.handle_missing(y, X, missing='none')

        y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]]
        assert_frame_equal(data['exog'], X_exp)
        assert_series_equal(data['endog'], y_exp)
Exemple #15
0
def test_categorical_dataframe(string_var):
    df = pd.DataFrame(string_var)
    design = tools.categorical(df, 'string_var', drop=True)
    dummies = pd.get_dummies(pd.Categorical(string_var))
    assert_frame_equal(design, dummies)

    df = pd.DataFrame({'apple': string_var, 'ban': string_var})
    design = tools.categorical(df, 'apple', drop=True)
    assert_frame_equal(design, dummies)
Exemple #16
0
def test_unobserved_components_time_varying(revisions, updates):
    # This is primarily a test that the `news` method works with a time-varying
    # setup (i.e. time-varying state space matrices). It tests a time-varying
    # UnobservedComponents model where the time-varying component has been set
    # to zeros against a time-invariant version of the model.

    # Construct previous and updated datasets
    endog = dta['infl'].copy()
    comparison_type = None
    if updates:
        endog1 = endog.loc[:'2009Q2'].copy()
        endog2 = endog.loc[:'2009Q3'].copy()
    else:
        endog1 = endog.loc[:'2009Q3'].copy()
        endog2 = endog.loc[:'2009Q3'].copy()
        # Without updates and without NaN values, we need to specify that
        # the type of the comparison object that we're passing is "updated"
        comparison_type = 'updated'
    if revisions:
        endog1.iloc[-1] = 0.

    exog1 = np.ones_like(endog1)
    exog2 = np.ones_like(endog2)

    # Compute the news from a model with a trend/exog term (so the model is
    # time-varying), but with the coefficient set to zero (so that it will be
    # equivalent to the time-invariant model)
    mod1 = structural.UnobservedComponents(endog1, 'llevel', exog=exog1)
    res1 = mod1.smooth([0.5, 0.2, 0.0])
    news1 = res1.news(endog2,
                      exog=exog2,
                      start='2008Q1',
                      end='2009Q3',
                      comparison_type=comparison_type)

    # Compute the news from a model without a trend term
    mod2 = structural.UnobservedComponents(endog1, 'llevel')
    res2 = mod2.smooth([0.5, 0.2])
    news2 = res2.news(endog2,
                      start='2008Q1',
                      end='2009Q3',
                      comparison_type=comparison_type)

    attrs = [
        'total_impacts', 'update_impacts', 'revision_impacts', 'news',
        'weights', 'update_forecasts', 'update_realized',
        'prev_impacted_forecasts', 'post_impacted_forecasts', 'revisions_iloc',
        'revisions_ix', 'updates_iloc', 'updates_ix'
    ]

    for attr in attrs:
        w = getattr(news1, attr)
        x = getattr(news2, attr)
        if isinstance(x, pd.Series):
            assert_series_equal(w, x)
        else:
            assert_frame_equal(w, x)
Exemple #17
0
def test_dynamic_factor_time_varying(revisions, updates):
    # This is primarily a test that the `news` method works with a time-varying
    # setup (i.e. time-varying state space matrices). It tests a time-varying
    # DynamicFactor model where the time-varying component has been set to
    # zeros against a time-invariant version of the model.

    # Construct previous and updated datasets
    endog = dta[['realgdp', 'unemp']].copy()
    endog['realgdp'] = np.log(endog['realgdp']).diff() * 400
    endog = endog.iloc[1:]
    comparison_type = None
    if updates:
        endog1 = endog.loc[:'2009Q2'].copy()
        endog2 = endog.loc[:'2009Q3'].copy()
    else:
        endog1 = endog.loc[:'2009Q3'].copy()
        endog2 = endog.loc[:'2009Q3'].copy()
        # Without updates and without NaN values, we need to specify that
        # the type of the comparison object that we're passing is "updated"
        comparison_type = 'updated'
    if revisions:
        # TODO: add test for only one of the variables revising?
        endog1.iloc[-1] = 0.

    exog1 = np.ones_like(endog1['realgdp'])
    exog2 = np.ones_like(endog2['realgdp'])
    params1 = np.r_[0.9, 0.2, 0.0, 0.0, 1.2, 1.1, 0.5, 0.2]
    params2 = np.r_[0.9, 0.2, 1.2, 1.1, 0.5, 0.2]

    # Compute the news from a model with an exog term (so the model is
    # time-varying), but with the coefficient set to zero (so that it will be
    # equivalent to the time-invariant model)
    mod1 = dynamic_factor.DynamicFactor(endog1, exog=exog1,
                                        k_factors=1, factor_order=2)
    res1 = mod1.smooth(params1)
    news1 = res1.news(endog2, exog=exog2, start='2008Q1', end='2009Q3',
                      comparison_type=comparison_type)

    # Compute the news from a model without a trend term
    mod2 = dynamic_factor.DynamicFactor(endog1, k_factors=1, factor_order=2)
    res2 = mod2.smooth(params2)
    news2 = res2.news(endog2, start='2008Q1', end='2009Q3',
                      comparison_type=comparison_type)

    attrs = ['total_impacts', 'update_impacts', 'revision_impacts', 'news',
             'weights', 'update_forecasts', 'update_realized',
             'prev_impacted_forecasts', 'post_impacted_forecasts',
             'revisions_iloc', 'revisions_ix', 'updates_iloc', 'updates_ix']

    for attr in attrs:
        w = getattr(news1, attr)
        x = getattr(news2, attr)
        if isinstance(x, pd.Series):
            assert_series_equal(w, x)
        else:
            assert_frame_equal(w, x)
Exemple #18
0
    def test_array_pandas(self):
        df = make_dataframe()
        df.values[[2, 5, 10], [2, 3, 1]] = np.nan
        y, X = df[df.columns[0]].values, df[df.columns[1:]]
        data, _ = sm_data.handle_missing(y, X, missing='drop')

        df = df.dropna()
        y_exp, X_exp = df[df.columns[0]].values, df[df.columns[1:]]
        assert_frame_equal(data['exog'], X_exp)
        np.testing.assert_array_equal(data['endog'], y_exp)
Exemple #19
0
 def test_attach(self):
     data = self.data
     # this makes sure what the wrappers need work but not the wrapped
     # results themselves
     assert_series_equal(data.wrap_output(self.col_input, 'columns'),
                         self.col_result)
     assert_series_equal(data.wrap_output(self.row_input, 'rows'),
                         self.row_result)
     assert_frame_equal(data.wrap_output(self.cov_input, 'cov'),
                        self.cov_result)
Exemple #20
0
def test_genfromdta_pandas():
    dta = macrodata.load_pandas().data
    curdir = os.path.dirname(os.path.abspath(__file__))

    with pytest.warns(FutureWarning):
        res1 = genfromdta(curdir + '/../../datasets/macrodata/macrodata.dta',
                          pandas=True)

    res1 = res1.astype(float)
    assert_frame_equal(res1, dta.astype(float))
Exemple #21
0
def test_repeated_measures_aggregation():
    df1 = AnovaRM(data, 'DV', 'id', within=['A', 'B', 'D']).fit()
    double_data = pd.concat([data, data], axis=0)
    df2 = AnovaRM(double_data,
                  'DV',
                  'id',
                  within=['A', 'B', 'D'],
                  aggregate_func=np.mean).fit()

    assert_frame_equal(df1.anova_table, df2.anova_table)
Exemple #22
0
 def test_cohn(self):
     cols = [
         'nuncen_above', 'nobs_below',
         'ncen_equal', 'prob_exceedance'
     ]
     cohn = ros.cohn_numbers(self.df, self.rescol, self.cencol)
     assert_frame_equal(
         cohn[cols],
         self.expected_cohn[cols],
         check_less_precise=True,
     )
Exemple #23
0
 def test_drop(self):
     y = self.y
     X = self.X
     combined = np.c_[y, X]
     idx = ~np.isnan(combined).any(axis=1)
     y = y.loc[idx]
     X = X.loc[idx]
     data = sm_data.handle_data(self.y, self.X, 'drop')
     np.testing.assert_array_equal(data.endog, y.values)
     assert_series_equal(data.orig_endog, self.y.loc[idx])
     np.testing.assert_array_equal(data.exog, X.values)
     assert_frame_equal(data.orig_exog, self.X.loc[idx])
Exemple #24
0
def test_categorical_series(string_var):
    design = tools.categorical(string_var, drop=True)
    dummies = pd.get_dummies(pd.Categorical(string_var))
    assert_frame_equal(design, dummies)
    design = tools.categorical(string_var, drop=False)
    dummies.columns = list(dummies.columns)
    assert_frame_equal(design.iloc[:, :5], dummies)
    assert_series_equal(design.iloc[:, 5], string_var)
    _, dictnames = tools.categorical(string_var, drop=False, dictnames=True)
    for i, c in enumerate(pd.Categorical(string_var).categories):
        assert i in dictnames
        assert dictnames[i] == c
Exemple #25
0
def test_pandas_freq_decorator():
    x = pd.util.testing.makeDataFrame()
    # in x, get a function back that returns an x with the same columns
    func = pandas_wrapper(dummy_func)

    np.testing.assert_equal(func(x.values), x)

    func = pandas_wrapper(dummy_func_array)
    assert_frame_equal(func(x), x)

    expected = x.rename(columns=dict(zip('ABCD', 'EFGH')))
    func = pandas_wrapper(dummy_func_array, names=list('EFGH'))
    assert_frame_equal(func(x), expected)
 def test_dataframe_forward(self):
     data = self.macro_df
     columns = list(data.columns)
     n = data.shape[0]
     values = np.zeros((n + 3, 16))
     values[:n, :4] = data.values
     for lag in range(1, 4):
         new_cols = [col + '.L.' + str(lag) for col in data]
         columns.extend(new_cols)
         values[lag:n + lag, 4 * lag:4 * (lag + 1)] = data.values
     index = data.index
     values = values[:n]
     expected = pd.DataFrame(values, columns=columns, index=index)
     both = sm.tsa.lagmat(self.macro_df,
                          3,
                          trim='forward',
                          original='in',
                          use_pandas=True)
     assert_frame_equal(both, expected)
     lags = sm.tsa.lagmat(self.macro_df,
                          3,
                          trim='forward',
                          original='ex',
                          use_pandas=True)
     assert_frame_equal(lags, expected.iloc[:, 4:])
     lags, lead = sm.tsa.lagmat(self.macro_df,
                                3,
                                trim='forward',
                                original='sep',
                                use_pandas=True)
     assert_frame_equal(lags, expected.iloc[:, 4:])
     assert_frame_equal(lead, expected.iloc[:, :4])
    def test_series_both(self):
        expected = pd.DataFrame(
            index=self.series.index,
            columns=['cpi', 'cpi.L.1', 'cpi.L.2', 'cpi.L.3'])
        expected['cpi'] = self.series
        for lag in range(1, 4):
            expected['cpi.L.' + str(int(lag))] = self.series.shift(lag)
        expected = expected.iloc[3:]

        both = sm.tsa.lagmat(self.series,
                             3,
                             trim='both',
                             original='in',
                             use_pandas=True)
        assert_frame_equal(both, expected)
        lags = sm.tsa.lagmat(self.series,
                             3,
                             trim='both',
                             original='ex',
                             use_pandas=True)
        assert_frame_equal(lags, expected.iloc[:, 1:])
        lags, lead = sm.tsa.lagmat(self.series,
                                   3,
                                   trim='both',
                                   original='sep',
                                   use_pandas=True)
        assert_frame_equal(lead, expected.iloc[:, :1])
        assert_frame_equal(lags, expected.iloc[:, 1:])
Exemple #28
0
    def test_series_both(self):
        expected = pd.DataFrame(
            index=self.series.index,
            columns=["cpi", "cpi.L.1", "cpi.L.2", "cpi.L.3"],
        )
        expected["cpi"] = self.series
        for lag in range(1, 4):
            expected["cpi.L." + str(int(lag))] = self.series.shift(lag)
        expected = expected.iloc[3:]

        both = stattools.lagmat(self.series,
                                3,
                                trim="both",
                                original="in",
                                use_pandas=True)
        assert_frame_equal(both, expected)
        lags = stattools.lagmat(self.series,
                                3,
                                trim="both",
                                original="ex",
                                use_pandas=True)
        assert_frame_equal(lags, expected.iloc[:, 1:])
        lags, lead = stattools.lagmat(self.series,
                                      3,
                                      trim="both",
                                      original="sep",
                                      use_pandas=True)
        assert_frame_equal(lead, expected.iloc[:, :1])
        assert_frame_equal(lags, expected.iloc[:, 1:])
Exemple #29
0
    def test_dataframe(self):
        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df)
        expected = df.copy()
        expected["const"] = self.c
        assert_frame_equal(expected, appended)

        prepended = tools.add_trend(df, prepend=True)
        expected = df.copy()
        expected.insert(0, "const", self.c)
        assert_frame_equal(expected, prepended)

        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df, trend="t")
        expected = df.copy()
        expected["trend"] = self.t
        assert_frame_equal(expected, appended)

        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df, trend="ctt")
        expected = df.copy()
        expected["const"] = self.c
        expected["trend"] = self.t
        expected["trend_squared"] = self.t**2
        assert_frame_equal(expected, appended)
Exemple #30
0
    def test_dataframe(self):
        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df)
        expected = df.copy()
        expected['const'] = self.c
        assert_frame_equal(expected, appended)

        prepended = tools.add_trend(df, prepend=True)
        expected = df.copy()
        expected.insert(0, 'const', self.c)
        assert_frame_equal(expected, prepended)

        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df, trend='t')
        expected = df.copy()
        expected['trend'] = self.t
        assert_frame_equal(expected, appended)

        df = pd.DataFrame(self.arr_2d)
        appended = tools.add_trend(df, trend='ctt')
        expected = df.copy()
        expected['const'] = self.c
        expected['trend'] = self.t
        expected['trend_squared'] = self.t ** 2
        assert_frame_equal(expected, appended)