def test_probs(self, close_figures):
        nobs = self.nobs
        probs = self.res.predict_prob()
        freq = np.bincount(self.endog) / nobs

        tzi = dia.test_chisquare_prob(self.res, probs[:, :2])
        # regression numbers
        tzi1 = (0.387770845, 0.5334734738)
        assert_allclose(tzi[:2], tzi1, rtol=5e-5)

        # smoke test for plot
        dia.plot_probs(freq, probs.mean(0))
Exemple #2
0
 def plot_probs(self, label='predicted', upp_xlim=None,
                fig=None):
     """Plot observed versus predicted frequencies for entire sample.
     """
     probs_predicted = self.probs_predicted.sum(0)
     k_probs = len(probs_predicted)
     freq = np.bincount(self.results.model.endog.astype(int),
                        minlength=k_probs)[:k_probs]
     fig = plot_probs(freq, probs_predicted,
                      label=label, upp_xlim=upp_xlim,
                      fig=fig)
     return fig
    def test_probs(self):
        nobs = self.nobs
        probs = self.res.predict_prob()
        freq = np.bincount(self.endog) / nobs

        tzi = dia.test_chisquare_prob(self.res, probs[:, :2])
        # regression numbers
        tzi1 = (0.387770845, 0.5334734738)
        assert_allclose(tzi[:2], tzi1)

        # smoke test for plot

        try:
            import matplotlib.pyplot as plt
        except ImportError:
            return
        fig = dia.plot_probs(freq, probs.mean(0))
        plt.close(fig)
    def test_probs(self):
        nobs = self.nobs
        probs = self.res.predict_prob()
        freq = np.bincount(self.endog) / nobs

        tzi = dia.test_chisquare_prob(self.res, probs[:, :2])
        # regression numbers
        tzi1 = (0.387770845, 0.5334734738)
        assert_allclose(tzi[:2], tzi1, rtol=5e-5)

        # smoke test for plot

        try:
            import matplotlib.pyplot as plt
        except ImportError:
            return
        fig = dia.plot_probs(freq, probs.mean(0))
        plt.close(fig)