Exemple #1
0
def gendat_nominal():

    ns = nominal_simulator()

    # The last component of params must be identically zero
    ns.params = [np.r_[0., 1], np.r_[-1., 0], np.r_[0., 0]]
    ns.ngroups = 200
    ns.dparams = [
        1.,
    ]
    ns.simulate()

    data = np.concatenate((ns.endog[:, None], ns.exog, ns.group[:, None]),
                          axis=1)

    ns.endog_ex, ns.exog_ex, ns.exog_ne, ns.nlevel = \
        gee_setup_nominal(data, 0, [3,])

    ns.group_ex = ns.exog_ne[:, 0]

    va = GlobalOddsRatio(3, "nominal")

    lhs = np.array([
        [0., 1., 1, 0],
    ])
    rhs = np.r_[0., ]

    return ns, va, Multinomial(3), (lhs, rhs)
Exemple #2
0
    def test_nominal(self):

        family = Multinomial(3)

        endog, exog, groups = load_data("gee_nominal_1.csv", icept=False)

        # Test with independence correlation
        v = Independence()
        md = GEE(endog, exog, groups, None, family, v)
        md.setup_nominal()
        mdf1 = md.fit()

        # From statsmodels.GEE (not an independent test)
        cf1 = np.r_[0.44944752, 0.45569985, -0.92007064, -0.46766728]
        se1 = np.r_[0.09801821, 0.07718842, 0.13229421, 0.08544553]
        assert_almost_equal(mdf1.params, cf1, decimal=5)
        assert_almost_equal(mdf1.standard_errors(), se1, decimal=5)

        # Test with global odds ratio dependence
        v = GlobalOddsRatio("nominal")
        md = GEE(endog, exog, groups, None, family, v)
        md.setup_nominal()
        mdf2 = md.fit(start_params=mdf1.params)

        # From statsmodels.GEE (not an independent test)
        cf2 = np.r_[0.45397549, 0.42278345, -0.91997131, -0.50115943]
        se2 = np.r_[0.09646057, 0.07405713, 0.1324629, 0.09025019]
        assert_almost_equal(mdf2.params, cf2, decimal=5)
        assert_almost_equal(mdf2.standard_errors(), se2, decimal=5)
Exemple #3
0
    def test_nominal(self):

        family = Multinomial(3)

        endog, exog, groups = load_data("gee_nominal_1.csv", icept=False)

        # Test with independence correlation
        va = Independence()
        mod1 = NominalGEE(endog, exog, groups, None, family, va)
        rslt1 = mod1.fit()

        # Regression test
        cf1 = np.r_[0.44944752, 0.45569985, -0.92007064, -0.46766728]
        se1 = np.r_[0.09801821, 0.07718842, 0.13229421, 0.08544553]
        assert_almost_equal(rslt1.params, cf1, decimal=5)
        assert_almost_equal(rslt1.standard_errors(), se1, decimal=5)

        # Test with global odds ratio dependence
        va = GlobalOddsRatio("nominal")
        mod2 = NominalGEE(endog, exog, groups, None, family, va)
        rslt2 = mod2.fit(start_params=rslt1.params)

        # Regression test
        cf2 = np.r_[0.45448248, 0.41945568, -0.92008924, -0.50485758]
        se2 = np.r_[0.09632274, 0.07433944, 0.13264646, 0.0911768]
        assert_almost_equal(rslt2.params, cf2, decimal=5)
        assert_almost_equal(rslt2.standard_errors(), se2, decimal=5)

        # Make sure we get the correct results type
        assert_equal(type(rslt1), NominalGEEResultsWrapper)
        assert_equal(type(rslt1._results), NominalGEEResults)
Exemple #4
0
    def test_nominal(self):

        family = Multinomial(3)

        endog, exog, groups = load_data("gee_nominal_1.csv", icept=False)

        # Test with independence correlation
        v = Independence()
        md = NominalGEE(endog, exog, groups, None, family, v)
        mdf1 = md.fit()

        # From statsmodels.GEE (not an independent test)
        cf1 = np.r_[0.44944752, 0.45569985, -0.92007064, -0.46766728]
        se1 = np.r_[0.09801821, 0.07718842, 0.13229421, 0.08544553]
        assert_almost_equal(mdf1.params, cf1, decimal=5)
        assert_almost_equal(mdf1.standard_errors(), se1, decimal=5)

        # Test with global odds ratio dependence
        v = GlobalOddsRatio("nominal")
        md = NominalGEE(endog, exog, groups, None, family, v)
        mdf2 = md.fit(start_params=mdf1.params)

        # From statsmodels.GEE (not an independent test)
        cf2 = np.r_[0.45448248, 0.41945568, -0.92008924, -0.50485758]
        se2 = np.r_[0.09632274, 0.07433944, 0.13264646, 0.0911768]
        assert_almost_equal(mdf2.params, cf2, decimal=5)
        assert_almost_equal(mdf2.standard_errors(), se2, decimal=5)
Exemple #5
0
    def setup_class(cls):

        family = Multinomial(3)

        endog, exog, groups = load_data("gee_nominal_1.csv", icept=False)

        # Test with independence correlation
        va = Independence()
        cls.mod = NominalGEE(endog, exog, groups, None, family, va)
        cls.start_params = np.array(
            [0.44944752, 0.45569985, -0.92007064, -0.46766728])
Exemple #6
0
    def test_wrapper(self):

        endog, exog, groups = load_data("gee_nominal_1.csv", icept=False)
        endog = pd.Series(endog, name='yendog')
        exog = pd.DataFrame(exog)
        groups = pd.Series(groups, name='the_group')

        family = Multinomial(3)
        va = Independence()
        mod = NominalGEE(endog, exog, groups, None, family, va)
        rslt2 = mod.fit()

        check_wrapper(rslt2)